咨询与建议

限定检索结果

文献类型

  • 8 篇 期刊文献

馆藏范围

  • 8 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8 篇 工学
    • 7 篇 计算机科学与技术...
    • 6 篇 控制科学与工程
    • 6 篇 软件工程
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 网络空间安全
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 系统科学

主题

  • 8 篇 distributed mach...
  • 4 篇 federated learni...
  • 2 篇 deep reinforceme...
  • 1 篇 noise-label lear...
  • 1 篇 network awarenes...
  • 1 篇 data privacy
  • 1 篇 privacy-preservi...
  • 1 篇 stragglers
  • 1 篇 software framewo...
  • 1 篇 load distributio...
  • 1 篇 edge intelligenc...
  • 1 篇 toolbox
  • 1 篇 heterogeneous ne...
  • 1 篇 non-independent ...
  • 1 篇 parameter server
  • 1 篇 regularization
  • 1 篇 population-play
  • 1 篇 collaborative le...
  • 1 篇 edge computing
  • 1 篇 edge information...

机构

  • 2 篇 department of au...
  • 1 篇 department of so...
  • 1 篇 institute for su...
  • 1 篇 college of compu...
  • 1 篇 zte corporation ...
  • 1 篇 research center ...
  • 1 篇 guangdong provin...
  • 1 篇 school of inform...
  • 1 篇 center for excel...
  • 1 篇 school of artifi...
  • 1 篇 shandong compute...
  • 1 篇 faculty of infor...
  • 1 篇 department of co...
  • 1 篇 school of data a...
  • 1 篇 department of co...
  • 1 篇 university of el...
  • 1 篇 school of electr...
  • 1 篇 institute of aut...
  • 1 篇 department of co...
  • 1 篇 school of comput...

作者

  • 1 篇 khandakar ahmed
  • 1 篇 khadija sultana
  • 1 篇 daniel jiménez-l...
  • 1 篇 yang shulin
  • 1 篇 meijing zhao
  • 1 篇 qiyue yin
  • 1 篇 sun gang
  • 1 篇 chuan chen
  • 1 篇 haibo mi
  • 1 篇 kaiqi huang
  • 1 篇 jiabo wang
  • 1 篇 xiaoxi wang
  • 1 篇 zoe l.jiang
  • 1 篇 wanyin xu
  • 1 篇 bruce gu
  • 1 篇 shengqi shen
  • 1 篇 bin liang
  • 1 篇 kele xu
  • 1 篇 weiping ding
  • 1 篇 jiajia zhang

语言

  • 8 篇 英文
检索条件"主题词=distributed machine learning"
8 条 记 录,以下是1-10 订阅
排序:
Deep reinforcement learning based worker selection for distributed machine learning enhanced edge intelligence in internet of vehicles
收藏 引用
Intelligent and Converged Networks 2020年 第3期1卷 234-242页
作者: Junyu Dong Wenjun Wu Yang Gao Xiaoxi Wang Pengbo Si Faculty of Information Technology Beijing University of TechnologyBeijing 100022China
Nowadays,Edge Information System(EIS)has received a lot of *** EIS,distributed machine learning(DML),which requires fewer computing resources,can implement many artificial intelligent applications ***,due to the dynam... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Adaptive Load Balancing for Parameter Servers in distributed machine learning over Heterogeneous Networks
收藏 引用
ZTE Communications 2023年 第1期21卷 72-80页
作者: CAI Weibo YANG Shulin SUN Gang ZHANG Qiming YU Hongfang University of Electronic Science and Technology of China Chengdu 611731China ZTE Corporation Shenzhen 518057China
In distributed machine learning(DML)based on the parameter server(PS)architecture,unbalanced communication load distribution of PSs will lead to a significant slowdown of model synchronization in heterogeneous network... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
distributed Deep Reinforcement learning:A Survey and a Multi-player Multi-agent learning Toolbox
收藏 引用
machine Intelligence Research 2024年 第3期21卷 411-430页
作者: Qiyue Yin Tongtong Yu Shengqi Shen Jun Yang Meijing Zhao Wancheng Ni Kaiqi Huang Bin Liang Liang Wang Institute of Automation Chinese Academy of SciencesBeijing 100190China School of Artificial Intelligence University of Chinese Academy of SciencesBeijing 100049China Department of Automation Tsinghua UniversityBeijing 100084China Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of SciencesBeijing 100190China
With the breakthrough of AlphaGo,deep reinforcement learning has become a recognized technique for solving sequential decision-making *** its reputation,data inefficiency caused by its trial and error learning mechani... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
A Tutorial on Federated learning from Theory to Practice:Foundations,Software Frameworks,Exemplary Use Cases,and Selected Trends
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2024年 第4期11卷 824-850页
作者: M.Victoria Luzón Nuria Rodríguez-Barroso Alberto Argente-Garrido Daniel Jiménez-López Jose M.Moyano Javier Del Ser Weiping Ding Francisco Herrera Department of Software Engineering Andalusian Research Institute in Data Science and Computational Intelligence(DaSCI)University of GranadaGranada 18071Spain Department of Computer Science and Artificial Intelligence Andalusian Research Institute in Data Science and Computational Intelligence(DaSCI)University of GranadaGranada 18071Spain Department of Communications Engineering University of the Basque Country(UPV/EHU)and also with TECNALIABasque Research&Technology Alliance(BRTA)Spain School of Information Science and Technology Nantong UniversityNantong 226019China
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized *** allows ML models t... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Elastic Optimization for Stragglers in Edge Federated learning
收藏 引用
Big Data Mining and Analytics 2023年 第4期6卷 404-420页
作者: Khadija Sultana Khandakar Ahmed Bruce Gu Hua Wang Institute for Sustainable Industries and Liveable Cities(ISILC) Victoria UniversityMelbourne 3011Australia Intelligent Technology Innovation Lab(ITIL) Institute for Sustainable Industries and Liveable Cities(ISILC)Victoria UniversityMelbourne 3011Australia. Shandong Computer Science Center(National Supercomputer Center) Jinan 250101China
To fully exploit enormous data generated by intelligent devices in edge computing,edge federated learning(EFL)is envisioned as a promising *** distributed collaborative training in EFL deals with delay and privacy iss... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
FedTC:A Personalized Federated learningMethod with Two Classifiers
收藏 引用
Computers, Materials & Continua 2023年 第9期76卷 3013-3027页
作者: Yang Liu Jiabo Wang Qinbo Liu Mehdi Gheisari Wanyin Xu Zoe L.Jiang Jiajia Zhang School of Computer Science and Technology Harbin Institute of TechnologyShenzhen518055China Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies Shenzhen518055China Research Center for Cyberspace Security Peng Cheng LaboratoryShenzhen518055China
Centralized training of deep learning models poses privacy risks that hinder their *** learning(FL)has emerged as a solution to address these risks,allowing multiple clients to train deep learning models collaborative... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Collaborative deep learning across multiple data centers
收藏 引用
Science China(Information Sciences) 2020年 第8期63卷 169-179页
作者: Haibo MI Kele XU Dawei FENG Huaimin WANG Yiming ZHANG Zibin ZHENG Chuan CHEN Xu LAN College of Computer National University of Defense Technology School of Data and Computer Science Sun Yat-sen University School of Electronic Engineering and Computer Science Queen Mary University of London
Valuable training data is often owned by independent organizations and located in multiple data centers. Most deep learning approaches require to centralize the multi-datacenter data for performance purpose. In practi... 详细信息
来源: 同方期刊数据库 同方期刊数据库 评论
Overhead-free Noise-tolerant Federated learning: A New Baseline
收藏 引用
machine Intelligence Research 2024年 第3期21卷 526-537页
作者: Shiyi Lin Deming Zhai Feilong Zhang Junjun Jiang Xianming Liu Xiangyang Ji Department of Computer Science and Technology Harbin Institute of TechnologyHarbin150000China Department of Automation Tsinghua UniversityBeijing100084China
Federated learning (FL) is a promising decentralized machine learning approach that enables multiple distributed clients to train a model jointly while keeping their data private. However, in real-world scenarios, the... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论