咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 控制科学与工程
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 1 篇 multivariate rat...
  • 1 篇 neural sentiment...
  • 1 篇 user product att...
  • 1 篇 deep collaborati...
  • 1 篇 artificial intel...

机构

  • 1 篇 department of co...
  • 1 篇 software enginee...
  • 1 篇 department of co...
  • 1 篇 faculty of compu...

作者

  • 1 篇 muhammad zunnura...
  • 1 篇 haroon abdul wah...
  • 1 篇 imran sarwar baj...
  • 1 篇 nadeem sarwar
  • 1 篇 muhammad zulkifl...
  • 1 篇 muhammad ibrahim

语言

  • 1 篇 英文
检索条件"主题词=deep collaborative filtering"
1 条 记 录,以下是1-10 订阅
排序:
Improved Hybrid deep collaborative filtering Approach for True Recommendations
收藏 引用
Computers, Materials & Continua 2023年 第3期74卷 5301-5317页
作者: Muhammad Ibrahim Imran Sarwar Bajwa Nadeem Sarwar Haroon Abdul Waheed Muhammad Zulkifl Hasan Muhammad Zunnurain Hussain Department of Computer Science The Islamia University of BahawalpurBahawalpurPakistan Department of Computer Science Bahria University Lahore CampusLahorePakistan Software Engineering Department Faculty of ITUniversity of Central PunjabLahorePakistan Faculty of Computer Science and Information Technology Universiti Putra MalaysiaSelangorMalaysia
Recommendation services become an essential and hot research topic for researchers *** data such asReviews play an important role in the recommendation of the *** was achieved by deep learning approaches for capturing... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论