咨询与建议

限定检索结果

文献类型

  • 6 篇 期刊文献

馆藏范围

  • 6 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 6 篇 工学
    • 4 篇 计算机科学与技术...
    • 3 篇 控制科学与工程
    • 3 篇 软件工程
    • 2 篇 仪器科学与技术
    • 2 篇 网络空间安全
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 轻工技术与工程
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 6 篇 data heterogenei...
  • 4 篇 federated learni...
  • 1 篇 industrial inter...
  • 1 篇 federal learning
  • 1 篇 integrated sensi...
  • 1 篇 multi-level grou...
  • 1 篇 decision fusion
  • 1 篇 data sharing
  • 1 篇 network topology
  • 1 篇 buildings
  • 1 篇 communication an...
  • 1 篇 editable blockch...
  • 1 篇 non-iid data
  • 1 篇 limited resource...
  • 1 篇 dis tributed lea...
  • 1 篇 renewable energy
  • 1 篇 graph embedding
  • 1 篇 feature alignmen...
  • 1 篇 decentralized fe...
  • 1 篇 solar energy

机构

  • 1 篇 jinan university...
  • 1 篇 universitàdella ...
  • 1 篇 guangdong univer...
  • 1 篇 delft university...
  • 1 篇 school of electr...
  • 1 篇 bern university ...
  • 1 篇 beijing universi...
  • 1 篇 changchun univer...
  • 1 篇 the key laborato...
  • 1 篇 college of compu...
  • 1 篇 school of engine...
  • 1 篇 department of co...

作者

  • 1 篇 gao minghan
  • 1 篇 wang limin
  • 1 篇 xiaofeng wang
  • 1 篇 he zaobo
  • 1 篇 xiuqi li
  • 1 篇 huang yansong
  • 1 篇 stefan jonas
  • 1 篇 li xuan
  • 1 篇 jie wu
  • 1 篇 angela meyer
  • 1 篇 ke li
  • 1 篇 han xuming
  • 1 篇 wang yanze
  • 1 篇 albin grataloup
  • 1 篇 haoji zhang
  • 1 篇 xin wang
  • 1 篇 zhao moke
  • 1 篇 yubin duan
  • 1 篇 hongnian yu
  • 1 篇 haoyu wu

语言

  • 6 篇 英文
检索条件"主题词=data heterogeneity"
6 条 记 录,以下是1-10 订阅
排序:
Hierarchical Optimization Method for Federated Learning with Feature Alignment and Decision Fusion
收藏 引用
Computers, Materials & Continua 2024年 第10期81卷 1391-1407页
作者: Ke Li Xiaofeng Wang Hu Wang College of Computer Science and Engineering North Minzu UniversityYinchuan750021China The Key Laboratory of Images&Graphics Intelligent Processing of State Ethnic Affairs Commission North Minzu UniversityYinchuan750021China
In the realm of data privacy protection,federated learning aims to collaboratively train a global ***,heterogeneous data between clients presents challenges,often resulting in slow convergence and inadequate accuracy ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
A review of federated learning in renewable energy applications:Potential,challenges,and future directions
Energy and AI
收藏 引用
Energy and AI 2024年 第3期17卷 444-457页
作者: Albin Grataloup Stefan Jonas Angela Meyer Bern University of Applied Sciences School of Engineering and Computer ScienceQuellgasse 21Biel2501Switzerland Universitàdella Svizzera italiana Faculty of InformaticsVia la Santa 1Lugano-Viganello6962Switzerland Delft University of Technology Department of Geoscience and Remote SensingStevinweg 1Delft2628The Netherlands
Federated learning has recently emerged as a privacy-preserving distributed machine learning *** learning enables collaborative training of multiple clients and entire fleets without sharing the involved training *** ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Topology design and graph embedding for decentralized federated learning
收藏 引用
Intelligent and Converged Networks 2024年 第2期5卷 100-115页
作者: Yubin Duan Xiuqi Li Jie Wu Department of Computer and Information Sciences Temple UniversityPhiladelphiaPA 19122USA
Federated learning has been widely employed in many applications to protect the data privacy of participating *** the dataset is decentralized among training devices in federated learning,the model parameters are usua... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Dual-blockchain based multi-layer grouping federated learning scheme for heterogeneous data in industrial IoT
收藏 引用
Blockchain(Research and Applications) 2024年 第3期5卷 11-21页
作者: Xin Wang Haoji Zhang Haoyu Wu Hongnian Yu School of Electronic Information and Artificial Intelligence Shaanxi University of Science&TechnologyXi’an710021China School of Engineering and the Built Environment Edinburgh Napier UniversityEdinburghEH105DTUnited Kingdom
Federated learning(FL)allows data owners to train neural networks together without sharing local data,allowing the industrial Internet of Things(IIoT)to share a variety of ***,traditional FL frameworks suffer from dat... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Federated Learning for 6G:A Survey From Perspective of Integrated Sensing,Communication and Computation
收藏 引用
ZTE Communications 2023年 第2期21卷 25-33页
作者: ZHAO Moke HUANG Yansong LI Xuan Beijing University of Posts and Telecommunications Beijing 100876China
With the rapid advancements in edge computing and artificial intelligence,federated learning(FL)has gained momentum as a promising approach to collaborative data utilization across organizations and devices,while ensu... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
A Survey of Federated Learning on Non-IID data
收藏 引用
ZTE Communications 2022年 第3期20卷 17-26页
作者: HAN Xuming GAO Minghan WANG Limin HE Zaobo WANG Yanze Jinan University Guangzhou 510632China Changchun University of Technology Changchun 130012China Guangdong University of Finance&Economics Guangzhou 510320China
Federated learning(FL) is a machine learning paradigm for data silos and privacy protection,which aims to organize multiple clients for training global machine learning models without exposing data to all ***,when dea... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论