咨询与建议

限定检索结果

文献类型

  • 4 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 7 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7 篇 工学
    • 6 篇 计算机科学与技术...
    • 4 篇 机械工程
    • 4 篇 控制科学与工程
    • 4 篇 软件工程
    • 1 篇 冶金工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
    • 1 篇 公安技术
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...

主题

  • 7 篇 channel pruning
  • 1 篇 automated machin...
  • 1 篇 ghostnet
  • 1 篇 depthwise separa...
  • 1 篇 yolov4
  • 1 篇 distillation
  • 1 篇 target board det...
  • 1 篇 vehicle detectio...
  • 1 篇 human actions re...
  • 1 篇 thin neck struct...
  • 1 篇 spatial temporal...
  • 1 篇 lightweight
  • 1 篇 cloud-edge colla...
  • 1 篇 u-net
  • 1 篇 carafe
  • 1 篇 batch normalizat...
  • 1 篇 compression rate
  • 1 篇 convolutional ne...
  • 1 篇 model compressio...
  • 1 篇 yolov5

机构

  • 1 篇 school of automa...
  • 1 篇 hohai university
  • 1 篇 college of autom...
  • 1 篇 school of inform...
  • 1 篇 state key labora...
  • 1 篇 jinan key labora...
  • 1 篇 college of compu...
  • 1 篇 key lab of indus...
  • 1 篇 shandong betr me...
  • 1 篇 tangshan branch ...
  • 1 篇 school of inform...
  • 1 篇 department of ne...
  • 1 篇 engineering rese...
  • 1 篇 school of comput...
  • 1 篇 school of comput...
  • 1 篇 shenzhen institu...
  • 1 篇 department of co...
  • 1 篇 school of comput...

作者

  • 1 篇 yuliang ma
  • 1 篇 hao ju
  • 1 篇 xiao-gang jin
  • 1 篇 minxian xu
  • 1 篇 junwei huang
  • 1 篇 hui huang
  • 1 篇 yiming fang
  • 1 篇 lin-lin ou
  • 1 篇 wang-long lu
  • 1 篇 dongliang zhao
  • 1 篇 zhengqi wang
  • 1 篇 ming-liang xu
  • 1 篇 yaoyao du
  • 1 篇 ying liu
  • 1 篇 zhenbin zhu
  • 1 篇 xiangkui jiang
  • 1 篇 huimin qian
  • 1 篇 bo liu
  • 1 篇 fengfei si
  • 1 篇 yuping chen

语言

  • 7 篇 英文
检索条件"主题词=channel pruning"
7 条 记 录,以下是1-10 订阅
排序:
Probability-Based channel pruning for Depthwise Separable Convolutional Networks
收藏 引用
Journal of Computer Science & Technology 2022年 第3期37卷 584-600页
作者: Han-Li Zhao Kai-Jie Shi Xiao-Gang Jin Ming-Liang Xu Hui Huang Wang-Long Lu Ying Liu College of Computer Science and Artificial Intelligence Wenzhou UniversityWenzhou 325035China State Key Laboratory of CAD&CG Zhejiang UniversityHangzhou 310058China School of Information Engineering Zhengzhou UniversityZhengzhou 450000China Department of Computer Science Memorial University of NewfoundlandSt.John's A1B 3X5Canada
channel pruning can reduce memory consumption and running time with least performance damage,and is one of the most important techniques in network ***,existing channel pruning methods mainly focus on the pruning of s... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Automatic channel pruning of U-Net Applied to Retinal Blood Vessels Segmentation
Automatic Channel Pruning of U-Net Applied to Retinal Blood ...
收藏 引用
第43届中国控制会议
作者: Xiajin Mei Zhenbin Zhu Mingxu Sun Yuliang Ma College of Automation Hangzhou Dianzi University Jinan Key Laboratory of Rehabilitation and Evaluation of Motor Dysfunction The People's Hospital of Huaiyin Shandong BetR Medical Technology Co. Ltd.
The U-Net model is widely utilized in medical image segmentation, yielding satisfactory results. However, retinal vascular image segmentation encounters an issue of model parameter redundancy. In our study, we propose... 详细信息
来源: cnki会议 评论
Effective Model Compression via Stage-wise pruning
收藏 引用
Machine Intelligence Research 2023年 第6期20卷 937-951页
作者: Ming-Yang Zhang Xin-Yi Yu Lin-Lin Ou School of Information Engineering Zhejiang University of TechnologyHangzhou310000China
Automated machine learning(AutoML)pruning methods aim at searching for a pruning strategy automatically to reduce the computational complexity of deep convolutional neural networks(deep CNNs).However,some previous wor... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
A Real-Time Small Target Vehicle Detection Algorithm with an Improved YOLOv5m Network Model
收藏 引用
Computers, Materials & Continua 2024年 第1期78卷 303-327页
作者: Yaoyao Du Xiangkui Jiang School of Automation Xi’an University of Posts and TelecommunicationsXi’an710121China
To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight arc... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Pedestrian and Vehicle Detection Based on pruning YOLOv4 with Cloud-Edge Collaboration
收藏 引用
Computer Modeling in Engineering & Sciences 2023年 第11期137卷 2025-2047页
作者: Huabin Wang Ruichao Mo Yuping Chen Weiwei Lin Minxian Xu Bo Liu School of Computer Science and Engineering Huizhou UniversityHuizhou516007China School of Computer Science and Engineering South China University of TechnologyGuangzhou510006China School of Computer Science and Technology South China Normal UniversityGuangzhou510631China Department of New Network Technologies Peng Cheng LaboratoryShenzhen518066China Shenzhen Institute of Advanced Technology Chinese Academy of SciencesShenzhen518055China
Nowadays,the rapid development of edge computing has driven an increasing number of deep learning applications deployed at the edge of the network,such as pedestrian and vehicle detection,to provide efficient intellig... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Improved Lightweight YOLOv5 Based on GhostNet and Its Application in Target Board Detection for Ladle Nozzle Positioning
Improved Lightweight YOLOv5 Based on GhostNet and Its Applic...
收藏 引用
第43届中国控制会议
作者: Fengfei Si Yiming Fang Hao Ju Dongliang Zhao Jingliang Xin Key Lab of Industrial Computer Control Engineering of Hebei Province Yanshan University Engineering Research Center of the Education Ministry for Intelligent Control System and Intelligent Equipment Yanshan University Tangshan Branch HBIS Company Limited
The detection of the target board of ladle nozzle positioning is the basis of automatic loading and unloading of ladle nozzle by ladle robot in continuous casting. Due to the complex situation of high temperature, dus... 详细信息
来源: cnki会议 评论
A Lightweight Two-stream Spatial Temporal Convolutional Neural Network for Human Actions Recognition
A Lightweight Two-stream Spatial Temporal Convolutional Neur...
收藏 引用
第43届中国控制会议
作者: Zhengqi Wang Huimin Qian Junwei Huang Hohai University
The convolutional operations of convolutional neural networks(CNNs) on images are untargeted, and the high model complexity of CNNs makes them less suitable for deployment on low-performance devices. According to thes... 详细信息
来源: cnki会议 评论