咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 15 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 13 篇 工学
    • 9 篇 机械工程
    • 5 篇 控制科学与工程
    • 5 篇 计算机科学与技术...
    • 5 篇 软件工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 信息与通信工程
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 交通运输工程
    • 1 篇 公安技术
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 2 篇 理学
    • 1 篇 数学
    • 1 篇 地球物理学
  • 2 篇 军事学
    • 2 篇 军队指挥学

主题

  • 15 篇 bearing fault di...
  • 3 篇 deep learning
  • 1 篇 multiple conditi...
  • 1 篇 multiscale noise...
  • 1 篇 coupled time-del...
  • 1 篇 one-dimensional ...
  • 1 篇 noise immunity
  • 1 篇 duffing system
  • 1 篇 colored noise
  • 1 篇 domain adversari...
  • 1 篇 autocorrelation ...
  • 1 篇 cvrgram
  • 1 篇 image representa...
  • 1 篇 noise estimation
  • 1 篇 wavelet denoisin...
  • 1 篇 dual-channel mod...
  • 1 篇 morphology simil...
  • 1 篇 empirical wavele...
  • 1 篇 singular value d...
  • 1 篇 feature fusion

机构

  • 1 篇 college of autom...
  • 1 篇 ministry of educ...
  • 1 篇 wuxi maimurun en...
  • 1 篇 department of co...
  • 1 篇 beijing goldwind...
  • 1 篇 school of mechan...
  • 1 篇 state key labora...
  • 1 篇 faculty of mecha...
  • 1 篇 nanjing universi...
  • 1 篇 key laboratory o...
  • 1 篇 school of mechat...
  • 1 篇 research and dev...
  • 1 篇 key laboratory o...
  • 1 篇 beijing key labo...
  • 1 篇 college of elect...
  • 1 篇 school of comput...
  • 1 篇 state key labora...
  • 1 篇 mcgill universit...
  • 1 篇 school of electr...
  • 1 篇 department of el...

作者

  • 1 篇 lingli cui
  • 1 篇 haoxuan wang
  • 1 篇 xiaodong li
  • 1 篇 pengxuan nie
  • 1 篇 dezun zhao
  • 1 篇 wang hui
  • 1 篇 qie xuliang
  • 1 篇 lei xue
  • 1 篇 he zhengjia
  • 1 篇 wei-tian lin
  • 1 篇 asoke k nandi
  • 1 篇 wang kai
  • 1 篇 wenjin zhou
  • 1 篇 jianhua liu
  • 1 篇 pengda wang
  • 1 篇 chunming wu
  • 1 篇 zhongmei wang
  • 1 篇 cao hongrui
  • 1 篇 jinbao zhang
  • 1 篇 shan shijie

语言

  • 14 篇 英文
  • 1 篇 中文
检索条件"主题词=bearing fault diagnosis"
15 条 记 录,以下是1-10 订阅
排序:
bearing fault diagnosis Method of Wind Turbine Based on Improved Anti-Noise Residual Shrinkage Network
收藏 引用
Energy Engineering 2022年 第2期119卷 665-680页
作者: Xiaolei Li Beijing Goldwind Science&Goldwind Huineng Technology Co. Ltd.Beijing100176China
Aiming at the difficulty of rolling bearing fault diagnosis of wind turbine under noise environment,a new bearing fault identification method based on the Improved Anti-noise Residual Shrinkage Network(IADRSN)is ***,t... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
bearing fault diagnosis Based on Graph Formulation and Graph Convolutional Network
收藏 引用
Journal of Dynamics, Monitoring and Diagnostics 2023年 第4期2卷 252-261页
作者: Xin Wang Wenjin Zhou Xiaodong Li Research and Development Center of Smart Information and Communications Technologies Shanghai Advanced Research InstituteChinese Academy of SciencesNo.99 Haike RoadShanghai 201210China Key Laboratory of Noise and Vibration Research Institute of AcousticsChinese Academy
bearing fault diagnosis stands as a critical component in the maintenance of rotating *** prevalent deep learning techniques are tailored to Euclidean datasets such as audio,image,and ***,these methods falter when con... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
bearing fault diagnosis based on a multiple-constraint modal-invariant graph convolutional fusion network
收藏 引用
High-Speed Railway 2024年 第2期2卷 92-100页
作者: Zhongmei Wang Pengxuan Nie Jianhua Liu Jing He Haibo Wu Pengfei Guo College of Railway Transportation Hunan University of TechnologyZhuzhou 412007China Wuxi Maimurun Environmental Technology Co. LtdWuxi 214000China
Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 博看期刊 评论
Attention mechanism based multi-scale feature extraction of bearing fault diagnosis
收藏 引用
Journal of Systems Engineering and Electronics 2023年 第5期34卷 1359-1367页
作者: LEI Xue LU Ningyun CHEN Chuang HU Tianzhen JIANG Bin College of Automation Engineering Nanjing University of Aeronautics and AstronauticsNanjing 211106China State Key Laboratory of Mechanics and Control of Mechanical Structures Nanjing University of Aeronautics and AstronauticsNanjing 211106China College of Electrical Engineering and Control Science Nanjing Tech UniversityNanjing 211816China
Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating *** practical applications,bearings often work at various rotational speeds as well as load ***,the bearing fault diagnosis un... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
WDBM: Weighted Deep Forest Model Based bearing fault diagnosis Method
收藏 引用
Computers, Materials & Continua 2022年 第9期72卷 4741-4754页
作者: Letao Gao Xiaoming Wang Tao Wang Mengyu Chang Department of Computer Science City University of Hong KongHong Kong999077China School of Computer and Software Engineer Xihua UniversityChengdu610039China Nanjing University of Aeronautics and Astronautics Nanjing210008China McGill University MontrealH3G 1Y2Canada
In the research field of bearing fault diagnosis,classical deep learning models have the problems of too many parameters and high computing *** addition,the classical deep learning models are not effective in the scen... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
CVRgram for Demodulation Band Determination in bearing fault diagnosis under Strong Gear Interference
收藏 引用
Journal of Dynamics, Monitoring and Diagnostics 2022年 第4期1卷 237-250页
作者: Pengda Wang Dezun Zhao Dongdong Liu Lingli Cui Beijing Key Laboratory of Advanced Manufacturing Technology Faculty of Materials and ManufacturingBeijing University of TechnologyBeijing 100124
fault-related resonance frequency band extraction-based demodulation methods are widely used for bearing ***,due to the high peaks of strong gear meshing interference,the classical band selection methods have poor per... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Morphology Similarity Distance for bearing fault diagnosis Based on Multi-Scale Permutation Entropy
收藏 引用
Journal of Harbin Institute of Technology(New Series) 2020年 第1期27卷 1-9页
作者: Jinbao Zhang Yongqiang Zhao Lingxian Kong Ming Liu School of Mechatronics Engineering Harbin Institute of Technology
bearings are crucial components in rotating machines,which have direct effects on industrial productivity and *** fast and accurately identify the operating condition of bearings,a novel method based on multi⁃scale pe... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
bearing fault diagnosis Based on Empirical Wavelet Transform and Singular Value Decomposition
Bearing Fault Diagnosis Based on Empirical Wavelet Transform...
收藏 引用
作者: Han-shuo LI Bin JIAO Wei-tian LIN School of Electrical Shanghai DianJi University
Aiming at the problem of noise in the signal in bearing fault diagnosis,a diagnosis method based on empirical wavelet transform and singular value decomposition was ***,the vibration signal of the fault bearing outer ... 详细信息
来源: cnki会议 评论
Stochastic resonance of coupled time-delayed system with fluctuation of mass and frequency and its application in bearing fault diagnosis
收藏 引用
Journal of Central South University 2021年 第9期28卷 2931-2946页
作者: ZHANG Gang WANG Hui ZHANG Tian-qi School of Communication and Information Engineering Chongqing University of Posts and TelecommunicationsChongqing 400065China
The stochastic resonance behavior of coupled stochastic resonance(SR)system with time-delay under mass and frequency fluctuations was ***,the approximate system model of the time-delay system was obtained by the theor... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
An Improved Multiscale Stochastic Resonance Method for bearing fault diagnosis
An Improved Multiscale Stochastic Resonance Method for Beari...
收藏 引用
第32届中国控制与决策会议
作者: Zhiyuan Li Siliang Lu Haoxuan Wang College of Electrical Engineering and Automation Anhui University State Key Laboratory of Mechanical Transmission Chongqing University
Stochastic resonance(SR) has been widely used for bearing fault *** multiscale noise tuning stochastic resonance(MSTSR) has been proven effective to analyze the weak bearing fault ***,the effect of MSTSR is not ve... 详细信息
来源: cnki会议 评论