咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 理学
    • 2 篇 数学

主题

  • 2 篇 balanced pair
  • 1 篇 proper class
  • 1 篇 extriangulated c...
  • 1 篇 resolvent dimens...
  • 1 篇 triangulated cat...
  • 1 篇 relative homolog...
  • 1 篇 relative group(c...
  • 1 篇 exact dimension
  • 1 篇 self-orthogonal ...

机构

  • 1 篇 ceremar center f...
  • 1 篇 departamento de ...
  • 1 篇 department of ma...
  • 1 篇 school of mathem...
  • 1 篇 college of scien...
  • 1 篇 school of mathem...
  • 1 篇 department of ma...
  • 1 篇 dcpartamento de ...

作者

  • 1 篇 luis oyonarte
  • 1 篇 j.r.garcia rozas
  • 1 篇 driss bennis
  • 1 篇 haiyan zhu
  • 1 篇 jiangsheng hu
  • 1 篇 lixin mao
  • 1 篇 xianhui fu
  • 1 篇 dongdong zhang

语言

  • 2 篇 英文
检索条件"主题词=balanced pair"
2 条 记 录,以下是1-10 订阅
排序:
balanced pairs on Triangulated Categories
收藏 引用
Algebra Colloquium 2023年 第3期30卷 385-394页
作者: Xianhui Fu Jiangsheng Hu Dongdong Zhang Haiyan Zhu School of Mathematics and Statistics Northeast Normal UniversityChangchun 130024China School of Mathematics Hangzhou Normal UniversityHangzhou 311121China Department of Mathematics Zhejiang Normal UniversityJinhuaZhejiang 321004China College of Science Zhejiang University of TechnologyHangzhou 310023China
Let C be a triangulated *** first introduce the notion of balanced pairs in C,and then establish the bijective correspondence between balanced pairs and proper classesξwith enoughξ-projectives andξ-*** thatξ:=ξX=... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
On Proper and Exact Relative Homological Dimensions
收藏 引用
Algebra Colloquium 2020年 第3期27卷 621-642页
作者: Driss Bennis J.R.Garcia Rozas Lixin Mao Luis Oyonarte CeReMAR Center Faculty of Sciences B.P.1014 Mohammed V University in RabatRabatMorocco Dcpartamento de Matematicas Universidad de AlmeriaAlmena 04071Spain Department of Mathematics and Physics Nanjing Institute of Technology Nanjing 211167China Departamento de Matematicas Universidad de AlmenaAlmena 04071Spain
In Enochs'relative homological dimension theory occur the(co)resolvent and(co)proper dimensions,which are defined by proper and coproper resolutions constructed by precovers and preenvelopes,***,some authors have been... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论