咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程

主题

  • 1 篇 lithium-ion batt...
  • 1 篇 deep learning
  • 1 篇 battery degradat...
  • 1 篇 aging paths
  • 1 篇 degradation diag...
  • 1 篇 synthetic traini...

机构

  • 1 篇 the faraday inst...
  • 1 篇 dyson school of ...

作者

  • 1 篇 weilong ai
  • 1 篇 haijun ruan
  • 1 篇 jingyi chen
  • 1 篇 billy wu

语言

  • 1 篇 英文
检索条件"主题词=Synthetic training dataset"
1 条 记 录,以下是1-10 订阅
排序:
Generalised diagnostic framework for rapid battery degradation quantification with deep learning
收藏 引用
Energy and AI 2022年 第3期9卷 24-36页
作者: Haijun Ruan Jingyi Chen Weilong Ai Billy Wu Dyson School of Design Engineering Imperial College LondonLondonSW72AZUnited Kingdom The Faraday Institution Quad OneHarwell Science and Innovation CampusDidcotUnited Kingdom
Diagnosing lithium-ion battery degradation is challenging due to the complex, nonlinear, and path-dependent nature of the problem. Here, we develop a generalised and rapid degradation diagnostic method with a deep lea... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论