咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 理学
    • 2 篇 物理学
    • 1 篇 化学
  • 2 篇 工学
    • 2 篇 控制科学与工程
    • 2 篇 计算机科学与技术...
    • 2 篇 软件工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 2 篇 superconductors
  • 2 篇 superconducting ...
  • 1 篇 crystal graph ne...
  • 1 篇 integrated machi...
  • 1 篇 crystal structur...

机构

  • 1 篇 blockchain devel...
  • 1 篇 sunrisephotovolt...
  • 1 篇 center of materi...
  • 1 篇 laboratory of en...
  • 1 篇 school of materi...
  • 1 篇 state key labora...
  • 1 篇 department of ma...
  • 1 篇 school of materi...
  • 1 篇 state key labora...
  • 1 篇 blockchain devel...
  • 1 篇 school of materi...
  • 1 篇 school of comput...

作者

  • 2 篇 kailong hu
  • 2 篇 xi lin
  • 2 篇 jingzi zhang
  • 2 篇 chengquan zhong
  • 1 篇 xiaoting lu
  • 1 篇 ke zhang
  • 1 篇 mingyang qin
  • 1 篇 jiakai liu
  • 1 篇 hua-jun qiu
  • 1 篇 mengkun zhao
  • 1 篇 yi li
  • 1 篇 shaomeng xu
  • 1 篇 x.-d.xiang

语言

  • 1 篇 英文
  • 1 篇 中文
检索条件"主题词=Superconducting critical temperature"
2 条 记 录,以下是1-10 订阅
排序:
An integrated machine learning model for accurate and robust prediction of superconducting critical temperature
收藏 引用
Journal of Energy Chemistry 2023年 第3期78卷 232-239,I0007页
作者: Jingzi Zhang Ke Zhang Shaomeng Xu Yi Li Chengquan Zhong Mengkun Zhao Hua-Jun Qiu Mingyang Qin X.-D.Xiang Kailong Hu Xi Lin School of Materials Science and Engineering Harbin Institute of TechnologyShenzhen 518055GuangdongChina Blockchain Development and Research Institute Harbin Institute of TechnologyShenzhen 518055GuangdongChina State Key Laboratory of Advanced Welding and Joining Harbin Institute of TechnologyHarbin 150001HeilongjiangChina School of Materials Science and Engineering Harbin Institute of TechnologyHarbin 150001HeilongjiangChina Department of Materials Science and Engineering&Department of Physics Southern University of Science and TechnologyShenzhen 518055GuangdongChina
Discovering new superconductors via traditional trial-and-error experimental approaches is apparently a time-consuming process,and the correlations between the critical temperature(Tc) and material features are still ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Crystal structure graph neural networks for high-performance superconducting critical temperature prediction
收藏 引用
Science China Materials 2024年 第10期67卷 3253-3261页
作者: Jingzi Zhang Chengquan Zhong Xiaoting Lu Jiakai Liu Kailong Hu Xi Lin School of Materials Science and Engineering Harbin Institute of TechnologyShenzhen 518055China Blockchain Development and Research Institute Harbin Institute of TechnologyShenzhen 518055China School of Computer Science and Technology Harbin Institute of TechnologyShenzhen 518055China State Key Laboratory of Advanced Welding and Joining Harbin Institute of TechnologyHarbin 150001China Laboratory of Environmental Sciences and Technology Xinjiang Technical Institute of Physics&ChemistryChinese Academy of SciencesUrumqi 830011China Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of SciencesBeijing 100049China Sunrise(Xiamen)Photovoltaic Industry Co. Ltd.Xiamen 361006China
The utilization of machine learning methods to predict the superconducting critical temperature(T_(c))traditionally necessitates manually constructing elemental features,which challenges both the provision of meaningf... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论