咨询与建议

限定检索结果

文献类型

  • 17 篇 期刊文献
  • 7 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 25 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 23 篇 工学
    • 14 篇 计算机科学与技术...
    • 10 篇 机械工程
    • 8 篇 软件工程
    • 7 篇 控制科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 信息与通信工程
    • 2 篇 交通运输工程
    • 1 篇 电气工程
    • 1 篇 土木工程
    • 1 篇 航空宇航科学与技...
  • 9 篇 管理学
    • 9 篇 管理科学与工程(可...
  • 2 篇 理学
    • 2 篇 数学

主题

  • 25 篇 small object det...
  • 3 篇 feature fusion
  • 3 篇 attention mechan...
  • 2 篇 transformer
  • 2 篇 deep learning
  • 2 篇 yolov7
  • 2 篇 cnn
  • 1 篇 covid-19
  • 1 篇 feature galore m...
  • 1 篇 receptive field ...
  • 1 篇 helmet wearing d...
  • 1 篇 end-to-end train...
  • 1 篇 object detection
  • 1 篇 unmanned aerial ...
  • 1 篇 plug-and-play
  • 1 篇 single shot mult...
  • 1 篇 bridge
  • 1 篇 traffic light be...
  • 1 篇 mssd feature fus...
  • 1 篇 steel surface de...

机构

  • 2 篇 hubei key labora...
  • 2 篇 school of comput...
  • 2 篇 hunan provincial...
  • 2 篇 school of comput...
  • 2 篇 school of automa...
  • 1 篇 school of comput...
  • 1 篇 college of artif...
  • 1 篇 college of compu...
  • 1 篇 national&local j...
  • 1 篇 school of mechan...
  • 1 篇 school of mathem...
  • 1 篇 binjiang cybersp...
  • 1 篇 college of quali...
  • 1 篇 department of co...
  • 1 篇 beijing institut...
  • 1 篇 college of compu...
  • 1 篇 college of infor...
  • 1 篇 hebei technology...
  • 1 篇 school of comput...
  • 1 篇 state key lab of...

作者

  • 2 篇 dengyong zhang
  • 2 篇 arun kumar sanga...
  • 2 篇 feng li
  • 2 篇 ming zhao
  • 1 篇 shaowen zhang
  • 1 篇 lei luo
  • 1 篇 ruilong chen
  • 1 篇 zhihua yu
  • 1 篇 keke geng
  • 1 篇 junhao ma
  • 1 篇 chongchong yu
  • 1 篇 jian wei
  • 1 篇 guangfu zeng
  • 1 篇 meng huang
  • 1 篇 kaiyuan li
  • 1 篇 tian-ran hao
  • 1 篇 xinchun liu
  • 1 篇 mao-xiang chu
  • 1 篇 rui liu
  • 1 篇 xiaoqiang chen

语言

  • 23 篇 英文
  • 2 篇 中文
检索条件"主题词=Small Object Detection"
25 条 记 录,以下是1-10 订阅
排序:
small object detection via Precise Region-Based Fully Convolutional Networks
收藏 引用
Computers, Materials & Continua 2021年 第11期69卷 1503-1517页
作者: Dengyong Zhang Jiawei Hu Feng Li Xiangling Ding Arun Kumar Sangaiah Victor SSheng Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation Changsha University of Science and TechnologyChangsha410114China School of Computer and Communication Engineering Changsha University of Science and TechnologyChangsha410114China School of Computer Science and Engineering Hunan University of Science and TechnologyXiangtan411004China School of Computing Science and Engineering Vellore Institute of Technology(VIT)Vellore632014India Department of Computer Science Texas Tech UniversityLubbock79409TXUSA
In the past several years,remarkable achievements have been made in the field of object *** performance is generally improving,the accuracy of small object detection remains low compared with that of large object *** ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
CAW-YOLO:Cross-Layer Fusion and Weighted Receptive Field-Based YOLO for small object detection in Remote Sensing
收藏 引用
Computer Modeling in Engineering & Sciences 2024年 第6期139卷 3209-3231页
作者: Weiya Shi Shaowen Zhang Shiqiang Zhang College of Artificial Intelligence and Big Data Henan University of TechnologyZhengzhou450001China College of Information Science and Engineering Henan University of TechnologyZhengzhou450001China
In recent years,there has been extensive research on object detection methods applied to optical remote sensing images utilizing convolutional neural *** these efforts,the detection of small objects in remote sensing ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
MSC-YOLO:Improved YOLOv7 Based on Multi-Scale Spatial Context for small object detection in UAV-View
收藏 引用
Computers, Materials & Continua 2024年 第4期79卷 983-1003页
作者: Xiangyan Tang Chengchun Ruan Xiulai Li Binbin Li Cebin Fu School of Computer Science and Technology Hainan UniversityHaikou570228China Hainan Blockchain Technology Engineering Research Center Hainan UniversityHaikou570228China School of Cyberspace Security(School of Cryptology) Hainan UniversityHaikou570228China
Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variati... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Interactive Transformer for small object detection
收藏 引用
Computers, Materials & Continua 2023年 第11期77卷 1699-1717页
作者: Jian Wei Qinzhao Wang Zixu Zhao Department of Weaponry and Control Army Academy of Armored ForcesBeijing100071China
The detection of large-scale objects has achieved high accuracy,but due to the low peak signal to noise ratio(PSNR),fewer distinguishing features,and ease of being occluded by the surroundings,the detection of small o... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Knowledge Distillation via Hierarchical Matching for small object detection
收藏 引用
Journal of Computer Science & Technology 2024年 第4期39卷 798-810页
作者: Yong-Chi Ma Xiao Ma Tian-Ran Hao Li-Sha Cui Shao-Hui Jin Pei Lyu School of Computer Science and Artificial Intelligence Zhengzhou UniversityZhengzhou 450000China
Knowledge distillation is often used for model compression and has achieved a great breakthrough in image classification,but there still remains scope for improvement in object detection,especially for knowledge extra... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Two-Layer Attention Feature Pyramid Network for small object detection
收藏 引用
Computer Modeling in Engineering & Sciences 2024年 第10期141卷 713-731页
作者: Sheng Xiang Junhao Ma Qunli Shang Xianbao Wang Defu Chen College of Information Engineering Zhejiang University of TechnologyHangzhou310023China Binjiang Cyberspace Security Institute of ZJUT Hangzhou310056China
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian ***,small objects are difficult to detect accurately because they contain less *** current ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
DSAFF-Net:A Backbone Network Based on Mask R-CNN for small object detection
收藏 引用
Computers, Materials & Continua 2023年 第2期74卷 3405-3419页
作者: Jian Peng Yifang Zhao Dengyong Zhang Feng Li Arun Kumar Sangaiah Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation Changsha University of Science and TechnologyChangsha410114China School of Computer and Communication Engineering Changsha University of Science and TechnologyChangsha410114China School of Computing Science and Engineering Vellore Institute of Technology(VIT)Vellore632014India
Recently,object detection based on convolutional neural networks(CNNs)has developed *** backbone networks for basic feature extraction are an important component of the whole detection ***,we present a new feature ext... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Density Map Guided Region Localization for End-to-End small object detection
收藏 引用
Journal of Systems Science and Information 2023年 第6期11卷 776-794页
作者: Bo LI Kai HUANG Junhui LI Yufu LIAO Sichuan Jiuzhou Aerocont Technologies Co. Ltd.Mianyang 621000China
With the advancement of society and science and technology, the demand for detecting small objects in practical scenarios becomes stronger. Such objects are only represented by relatively small coverage of pixels, and... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Contextual Information Fusion for small object detection
Contextual Information Fusion for Small Object Detection
收藏 引用
第40届中国控制会议
作者: Jun Chen Xiaoqiang Chen Linbo Luo Ganbei Wang School of Automation China University of Geosciences Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of Education
In view of the difficulty and low accuracy of small object detection for remote sensing images, this paper proposes a small object detection algorithm based on contextual information fusion to solve the problem of rea... 详细信息
来源: cnki会议 评论
Research on small object detection Method in Substation Inspection Based on Improved YOLOv5s Network Model
Research on Small Object Detection Method in Substation Insp...
收藏 引用
第43届中国控制会议
作者: Hongyan Yu Xinchun Liu Weixing Qian Tiancong Gao Jiefei Zhuang Yuxuan Xu Weijiang Cai School of Electrical Engineering and Automation Nanjing Normal University Institute of Hydropower Technology NARI Group
During the inspection process at substations,inspection robots and intelligent monitoring devices capture images for real-time ***,traditional convolutional neural network methods perform poorly in detecting common co... 详细信息
来源: cnki会议 评论