咨询与建议

限定检索结果

文献类型

  • 45 篇 期刊文献
  • 29 篇 会议

馆藏范围

  • 74 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 66 篇 工学
    • 39 篇 仪器科学与技术
    • 32 篇 公安技术
    • 13 篇 软件工程
    • 10 篇 计算机科学与技术...
    • 10 篇 化学工程与技术
    • 8 篇 控制科学与工程
    • 7 篇 机械工程
    • 7 篇 信息与通信工程
    • 6 篇 材料科学与工程(可...
    • 4 篇 动力工程及工程热...
    • 3 篇 冶金工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 纺织科学与工程
    • 1 篇 轻工技术与工程
    • 1 篇 食品科学与工程(可...
    • 1 篇 生物工程
    • 1 篇 网络空间安全
  • 8 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 6 篇 理学
    • 4 篇 数学
    • 3 篇 统计学(可授理学、...
    • 2 篇 化学
    • 1 篇 物理学

主题

  • 74 篇 process monitori...
  • 8 篇 fault diagnosis
  • 8 篇 fault detection
  • 8 篇 principal compon...
  • 6 篇 pca
  • 4 篇 nonlinear
  • 3 篇 feature extracti...
  • 3 篇 dictionary learn...
  • 2 篇 multimode proces...
  • 2 篇 fault isolation
  • 2 篇 multi-sensor
  • 2 篇 self-organizing ...
  • 2 篇 additive manufac...
  • 2 篇 process control
  • 2 篇 ensemble
  • 2 篇 machine learning
  • 2 篇 variable selecti...
  • 2 篇 batch process
  • 2 篇 gaussian mixture...
  • 1 篇 internet of thin...

机构

  • 4 篇 key laboratory o...
  • 3 篇 school of automa...
  • 2 篇 school of inform...
  • 2 篇 college of infor...
  • 2 篇 key laboratory o...
  • 2 篇 college of infor...
  • 1 篇 queen’s universi...
  • 1 篇 department of ch...
  • 1 篇 computer science...
  • 1 篇 centre for mccha...
  • 1 篇 department of in...
  • 1 篇 advanced technol...
  • 1 篇 department of me...
  • 1 篇 school of inform...
  • 1 篇 school of mechat...
  • 1 篇 energy engineeri...
  • 1 篇 state key labora...
  • 1 篇 t dresden instit...
  • 1 篇 information tech...
  • 1 篇 xi’an research i...

作者

  • 4 篇 赵旭
  • 4 篇 hongbo shi
  • 4 篇 邵惠鹤
  • 3 篇 张曦
  • 3 篇 wenli du
  • 3 篇 阎威武
  • 3 篇 keke huang
  • 2 篇 weihua gui
  • 2 篇 zhi li
  • 2 篇 chunhua yang
  • 2 篇 xing peng
  • 2 篇 chunjie yang
  • 2 篇 yao chen
  • 2 篇 xuefeng yan
  • 2 篇 侍洪波
  • 2 篇 xiongzhuo zhu
  • 2 篇 yonggang li
  • 2 篇 lingbao kong
  • 2 篇 eckhard beyer
  • 1 篇 wang xiao-gang

语言

  • 68 篇 英文
  • 6 篇 中文
检索条件"主题词=Process Monitoring"
74 条 记 录,以下是31-40 订阅
排序:
Causal Feature Extraction Using the Dynamic-Inner Model for process monitoring
Causal Feature Extraction Using the Dynamic-Inner Model for ...
收藏 引用
第31届中国过程控制会议(CPCC2020)
作者: Feng Yu Weiyang Li Fan Yang Dexian Huang Zhihua Xiong Department of Automation Tsinghua University Beijing National Research Center for Information Science and Technology
Causality analysis methods, such as Granger causality analysis(GCA) and transfer entropy(TE) have been widely used for fault detection and topology building in process monitoring. However, they view causal factors as ... 详细信息
来源: cnki会议 评论
Specific index-related process monitoring using a two-step information extraction method
Specific index-related process monitoring using a two-step i...
收藏 引用
第30届中国控制与决策会议
作者: Bo Zhao Bing Song Shuai Tan Hongbo Shi Key Laboratory of Advanced Control and Optimization for Chemical processes of Ministry of Education East China University of Science and Technology
Specific index-related process monitoring covers a wide range of requirements from industrial production. At present, it is still a challenge to divide into the specific index-related information and the specific inde... 详细信息
来源: cnki会议 评论
Distribution Adaptation Local Outlier Factor for Multimode process monitoring
Distribution Adaptation Local Outlier Factor for Multimode P...
收藏 引用
第三十九届中国控制会议
作者: Yutang Xiao Yang Tao Hongbo Shi Key Laboratory of Advanced Control and Optimization for Chemical processes of the Ministry of Education East China University of Science and Technology
In modern industrial processes, the production process includes multiple operating modes, due to changes in production goals and conditions. And the data generated in this process is a mixture of Gaussian and non-Gaus... 详细信息
来源: cnki会议 评论
A process monitoring Method Based on Global-Local Structure Analysis in Principal Component Reconstruction Space
A Process Monitoring Method Based on Global-Local Structure ...
收藏 引用
第37届中国控制会议
作者: Qi Chen Canghua Jiang Siyi Wu School of Electrical Engineering and Automation Hefei University of Technology
The performance of projection-based process monitoring methods is prone to be affected by noise in data. By constructing latent variables that have large contribution to variance, principal component analysis(PCA) c... 详细信息
来源: cnki会议 评论
Multimode Industrial process monitoring using Hierarchical Mode Division and Serial Independent Component Analysis
Multimode Industrial Process Monitoring using Hierarchical M...
收藏 引用
第32届中国过程控制会议(CPCC2021)
作者: Shuai Li Xiaofeng Zhou Haibo Shi Key Laboratory of Networked Control Systems Chinese Academy of Sciences Shenyang Institute of Automation Chinese Academy of Sciences Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences University of Chinese Academy of Sciences
With the increasing scale and complexity,how to analyze the hybrid characteristics including multimode,nonGaussianity and nonlinearity is one of the most difficult problems faced by multimode industrial process *** pa... 详细信息
来源: cnki会议 评论
A Novel Outlier Detection Method for Improving Industrial process monitoring
A Novel Outlier Detection Method for Improving Industrial Pr...
收藏 引用
第30届中国控制与决策会议
作者: Yanfeng Zhang Liaoning Water Conservancy Vocational College
This paper focuses on improving data environment in the context of industrial process *** the negative influence of outliers in target set,this paper proposes a novel two-level ensemble model,in which the base learner... 详细信息
来源: cnki会议 评论
Research on process monitoring Method Based on SPC and PCA Technology
Research on Process Monitoring Method Based on SPC and PCA T...
收藏 引用
2011 Chinese Control and Decision Conference(CCDC)
作者: Kunlin Zhou,School of Mechanical,Electrical & Information Engineering,Shandong University at Weihai,Weihai,264209 Rongsheng Guo,School of Mechanical,Electrical & Information Engineering,Shandong University at Weihai,Weihai,264209
In order to overcome the interaction between variables for the multivariate process monitoring,a new method to use statistical process control and principal component analysis was proposed,which reduced the multivaria... 详细信息
来源: cnki会议 评论
Design of the process monitoring Management System Based on RFID
Design of the Process Monitoring Management System Based on ...
收藏 引用
2009中国控制与决策会议
作者: Ma Lian-bo~1,Zhang Lei~1,Ma Lian-yang~2,Hu Kun-yuan~1,Su Wei-xing~1 1.Key Laboratory of Industrial Informatics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 100004,China 2.Department of Computer,Xidian University,Xi''an 710071,China
<正>Considering the higher requirements for data acquisition and information processing of process-trace in discrete manufacturing industry,the architecture of the process monitoring management system based on RFID ... 详细信息
来源: cnki会议 评论
process disturbances monitoring and recognition of short-circuiting GMAW by fuzzy c-means system
收藏 引用
China Welding 2011年 第4期20卷 28-33页
作者: 胡庆贤 王顺尧 王艳辉 Provincial Key Lab of Advanced Welding Technology Jiangsu University of Science and Technology Zhenjiang 212002
An intelligent fuzzy c-means system for process monitoring and recognition of process disturbances during short- circuiting gas metal arc welding (GMAW) is introduced in this paper. The raw measured and statisticall... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
A Flow-based Deep Variational Canonical Variate Analysis Method for monitoring Blast Furnace Iron-making process
A Flow-based Deep Variational Canonical Variate Analysis Met...
收藏 引用
第35届中国过程控制会议
作者: Yuelin Yang Chunjie Yang Siwei Lou Xiongzhuo Zhu Weibin Wang College of Control Science and Engineering Zhejiang University
Blast furnace iron-making process is an essential component in the iron and steel industry. However, establishing an efficient process monitoring model remains a significant challenge due to dynamic and nonlinear qual... 详细信息
来源: cnki会议 评论