咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 理学
    • 3 篇 数学

主题

  • 3 篇 permanence prope...
  • 3 篇 metric space
  • 2 篇 large scale deco...
  • 1 篇 uniform embeddin...
  • 1 篇 decomposi- tion ...
  • 1 篇 asymptotic dimen...
  • 1 篇 property a
  • 1 篇 uniformly convex...
  • 1 篇 property aub
  • 1 篇 metric sparsific...

机构

  • 1 篇 college of mathe...
  • 1 篇 corresponding au...
  • 1 篇 department of ap...
  • 1 篇 research center ...
  • 1 篇 college of scien...
  • 1 篇 department of ap...

作者

  • 2 篇 qin wang
  • 2 篇 xianjin wang
  • 1 篇 王勤
  • 1 篇 王显金
  • 1 篇 yujuan duan
  • 1 篇 wenjing wang
  • 1 篇 杨军

语言

  • 3 篇 英文
检索条件"主题词=Permanence property"
3 条 记 录,以下是1-10 订阅
排序:
permanence of Metric Sparsification property under Finite Decomposition Complexity
收藏 引用
Chinese Annals of Mathematics,Series B 2014年 第5期35卷 751-760页
作者: Qin WANG Wenjing WANG Xianjin WANG Research Center for Operator Algebras Department of Mathematics East China Normal University Department of Applied Mathematics Donghua University College of Mathematics and Statistics Chongqing University
The notions of metric sparsification property and finite decomposition complexity are recently introduced in metric geometry to study the coarse Novikov conjecture and the stable Borel conjecture. In this paper, it is... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
property A and Uniform Embeddability of Metric Spaces Under Decompositions of Finite Depth
收藏 引用
Chinese Annals of Mathematics,Series B 2010年 第1期31卷 21-34页
作者: Yujuan DUAN Qin WANG Xianjin WANG Department of Applied Mathematics Donghua University Shanghai 201620 China Corresponding author. Department of Applied Mathematics Donghua University Shanghai 201620 China
property A and uniform embeddability are notions of metric geometry which imply the coarse Baum-Connes conjecture and the Novikov *** this paper,the authors prove the permanence properties of property A and uniform em... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
property A_(UB) of Metric Spaces under Decompositions of Finite Depth
收藏 引用
Journal of Donghua University(English Edition) 2010年 第5期27卷 618-622页
作者: 王显金 杨军 王勤 College of Science Donghua University
property AUB is the notion in metric geometry which has applications in higher index *** this paper,the permanence property of property AUB of metric spaces under large scale decompositions of finite depth is proved.
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论