咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程

主题

  • 1 篇 online predictio...
  • 1 篇 battery prognosi...
  • 1 篇 time series fore...
  • 1 篇 machine learning
  • 1 篇 lithium metal ba...

机构

  • 1 篇 advanced researc...
  • 1 篇 beijing key labo...
  • 1 篇 institute of fun...

作者

  • 1 篇 jia-qi huang
  • 1 篇 xue-qiang zhang
  • 1 篇 chong yan
  • 1 篇 xiang chen
  • 1 篇 gao-long zhu
  • 1 篇 xinyan liu
  • 1 篇 hong-jie peng

语言

  • 1 篇 英文
检索条件"主题词=Online prediction"
1 条 记 录,以下是1-10 订阅
排序:
A generalizable, data-driven online approach to forecast capacity degradation trajectory of lithium batteries
收藏 引用
Journal of Energy Chemistry 2022年 第5期31卷 548-555页
作者: Xinyan Liu Xue-Qiang Zhang Xiang Chen Gao-Long Zhu Chong Yan Jia-Qi Huang Hong-Jie Peng Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of ChinaChengdu 611731SichuanChina Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical EngineeringTsinghua UniversityBeijing 100084China Advanced Research Institute of Multidisciplinary Science Beijing Institute of TechnologyBeijing 100081China
Estimating battery degradation is vital not only to monitor battery’s state-of-health but also to accelerate research on new battery chemistries. Herein, we present a data-driven approach to forecast the capacity fad... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论