咨询与建议

限定检索结果

文献类型

  • 6 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 7 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7 篇 工学
    • 5 篇 计算机科学与技术...
    • 4 篇 控制科学与工程
    • 4 篇 软件工程
    • 2 篇 机械工程
    • 1 篇 电气工程
  • 4 篇 管理学
    • 4 篇 管理科学与工程(可...

主题

  • 7 篇 maximum mean dis...
  • 1 篇 unsupervised dom...
  • 1 篇 generative adver...
  • 1 篇 unsupervised dom...
  • 1 篇 transfer learnin...
  • 1 篇 domain adaptatio...
  • 1 篇 resource-limited...
  • 1 篇 dual density sam...
  • 1 篇 label distributi...
  • 1 篇 support vector m...
  • 1 篇 knowledge transf...
  • 1 篇 state of health(...
  • 1 篇 person re-identi...
  • 1 篇 semi supervised ...
  • 1 篇 intra-domain ris...
  • 1 篇 auxiliary variab...
  • 1 篇 joint distributi...
  • 1 篇 multiple kernel ...
  • 1 篇 maximum scatter ...
  • 1 篇 cross-domain ris...

机构

  • 1 篇 school of inform...
  • 1 篇 westlake institu...
  • 1 篇 the school of co...
  • 1 篇 didi chuxing sci...
  • 1 篇 college of scien...
  • 1 篇 national key lab...
  • 1 篇 department of co...
  • 1 篇 the faculty of i...
  • 1 篇 shanghai key lab...
  • 1 篇 ieee
  • 1 篇 school of mathem...
  • 1 篇 department of el...
  • 1 篇 key laboratory o...
  • 1 篇 research institu...
  • 1 篇 school of digita...
  • 1 篇 the institute of...
  • 1 篇 department of co...
  • 1 篇 school of mechan...
  • 1 篇 the school of in...
  • 1 篇 college of mater...

作者

  • 1 篇 luyao teng
  • 1 篇 shiquan wang
  • 1 篇 gui-xu zhang
  • 1 篇 zefeng zheng
  • 1 篇 ruidong fan
  • 1 篇 sheng xu
  • 1 篇 chenping hou
  • 1 篇 shixiong xiang
  • 1 篇 shaohua teng
  • 1 篇 qiang wu
  • 1 篇 wenzhang zhuge
  • 1 篇 naiqi wu
  • 1 篇 tingjin luo
  • 1 篇 yi-ying zhang
  • 1 篇 hongsheng qi
  • 1 篇 2 department of ...
  • 1 篇 chao-min shen
  • 1 篇 tao jianwen 1 3 ...
  • 1 篇 juntao huang
  • 1 篇 kai ou

语言

  • 7 篇 英文
检索条件"主题词=Maximum mean discrepancy"
7 条 记 录,以下是1-10 订阅
排序:
Active label distribution learning via kernel maximum mean discrepancy
收藏 引用
Frontiers of Computer Science 2023年 第4期17卷 69-81页
作者: Xinyue DONG Tingjin LUO Ruidong FAN Wenzhang ZHUGE Chenping HOU College of Science National University of Defense TechnologyChangsha 410073China
Label distribution learning(LDL)is a new learning paradigm to deal with label ambiguity and many researches have achieved the prominent *** with traditional supervised learning scenarios,the annotation with label dist... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Knowledge Transfer Learning via Dual Density Sampling for Resource-Limited Domain Adaptation
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第12期10卷 2269-2291页
作者: Zefeng Zheng Luyao Teng Wei Zhang Naiqi Wu Shaohua Teng the School of Computer Science and Technology Guangdong University of TechnologyGuangzhou 510006China the School of Information Engineering Guangzhou Panyu PolytechicGuangzhou 511483China the Faculty of Information Technology Monash University20 Exhibition Walk ClaytonVIC 3800Australia IEEE the Institute of Systems Engineering and Collaborative Laboratory for Intelligent Science and Systems Macao University of Science and TechnologyMacao 999078China
Most existing domain adaptation(DA) methods aim to explore favorable performance under complicated environments by ***,there are three unsolved problems that limit their efficiencies:ⅰ) they adopt global sampling but... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Enhancing Unsupervised Domain Adaptation for Person Re-Identification with the Minimal Transfer Cost Framework
收藏 引用
Computers, Materials & Continua 2024年 第9期80卷 4197-4218页
作者: Sheng Xu Shixiong Xiang Feiyu Meng Qiang Wu Research Institute of Electronic Science and Technology University of Electronic Science and Technology of ChinaChengdu610000China National Key Laboratory of Optical FieldManipulation Science and Technology Chinese Academy of SciencesChengdu610209China
In Unsupervised Domain Adaptation(UDA)for person re-identification(re-ID),the primary challenge is reducing the distribution discrepancy between the source and target *** can be achieved by implicitly or explicitly co... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Enhanced vision-transformer integrating with semi-supervised transfer learning for state of health and remaining useful life estimation of lithium-ion batteries
Energy and AI
收藏 引用
Energy and AI 2024年 第3期17卷 380-396页
作者: Ya-Xiong Wang Shangyu Zhao Shiquan Wang Kai Ou Jiujun Zhang School of Mechanical Engineering and Automation Fuzhou UniversityFuzhou 350108China College of Materials Science and Engineering Fuzhou UniversityFuzhou 350108China
The state of health(SOH)and remaining useful life(RUL)of lithium-ion batteries are crucial for health management and ***,most data-driven estimation methods heavily rely on scarce labeled data,while traditional transf... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
A kernel learning framework for domain adaptation learning
收藏 引用
Science China(Information Sciences) 2012年 第9期55卷 1983-2007页
作者: TAO JianWen 1,3,CHUNG FuLai 2 & WANG ShiTong 1,2 1 School of Digital Media,Jiangnan University,Wuxi 214122,China 2 Department of Computing,Hong Kong Polytechnic University,Hong Kong,China 3 School of Information Engineering,Zhejiang Business Technology Institute,Ningbo 315012,China School of Digital Media Jiangnan University Wuxi China School of Information Engineering Zhejiang Business Technology Institute Ningbo China Department of Computing Hong Kong Polytechnic University Hong Kong China
Domain adaptation learning(DAL) methods have shown promising results by utilizing labeled samples from the source(or auxiliary) domain(s) to learn a robust classifier for the target domain which has a few or even no l... 详细信息
来源: 同方期刊数据库 同方期刊数据库 评论
Generative Adversarial Networks with Joint Distribution Moment Matching
收藏 引用
Journal of the Operations Research Society of China 2019年 第4期7卷 579-597页
作者: Yi-Ying Zhang Chao-Min Shen Hao Feng Preston Thomas Fletcher Gui-Xu Zhang Department of Computer Science East China Normal UniversityShanghai 200062China Shanghai Key Laboratory of Multidimensional Information Processing East China Normal UniversityShanghai 200062China Westlake Institute for Brain-Like Science and Technology Hangzhou 310027China Didi Chuxing Science and Technology Co.Ltd. Beijing 100193China Department of Electrical and Computer Engineering University of VirginiaCharlottesvilleVA 22904USA
Generative adversarial networks(GANs)have shown impressive power in the field of machine *** GANs have focused on unsupervised learning *** recent years,conditional GANs that can generate data with labels have been pr... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Unsupervised Domain Adaptation with Multi-kernel MMD
Unsupervised Domain Adaptation with Multi-kernel MMD
收藏 引用
第40届中国控制会议
作者: Juntao Huang Hongsheng Qi School of Mathematical Sciences University of Chinese Academy of Sciences Key Laboratory of Systems and Control Academy of Mathematics and Systems ScienceChinese Academy of Sciences
In this work,we propose a method to solve the problem of unsupervised domain *** of existing works are based on adversarial learning method,which obtains the features of inputs through a feature extraction network,and... 详细信息
来源: cnki会议 评论