In this paper, a new class of fuzzy mappings called semistrictly convex fuzzy mappings is introduced and we present some properties of this kind of fuzzy mappings. In particular, we prove that a local minimum of a sem...
详细信息
In this paper, a new class of fuzzy mappings called semistrictly convex fuzzy mappings is introduced and we present some properties of this kind of fuzzy mappings. In particular, we prove that a local minimum of a semistrictly convex fuzzy mapping is also a global minimum. We also discuss the relations among convexity, strict convexity and semistrict convexity of fuzzy mapping, and give several sufficient conditions for convexity and semistrict convexity.
The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for ...
详细信息
The stability analysis of the solution mappings for vector equilibrium problems is an important topic in optimization theory and its applications. In this paper, we focus on the continuity of the solution mapping for a parametric generalized strong vector equilibrium problem. By virtue of a nonlinear scalarization technique, a new density result of the solution mapping is obtained. Based on the density result, we give sufficient conditions for the lower semicontinuity and the Hausdorff upper semicontinuity of the solution mapping to the parametric generalized strong vector equilibrium problem. In addition, some examples were given to illustrate that our results improve ones in the literature.
暂无评论