咨询与建议

限定检索结果

文献类型

  • 43 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 45 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 43 篇 工学
    • 39 篇 地质资源与地质工...
    • 6 篇 测绘科学与技术
    • 4 篇 计算机科学与技术...
    • 3 篇 控制科学与工程
    • 3 篇 交通运输工程
    • 3 篇 软件工程
    • 2 篇 土木工程
    • 2 篇 矿业工程
    • 1 篇 机械工程
    • 1 篇 水利工程
  • 10 篇 理学
    • 6 篇 地理学
    • 3 篇 地球物理学
    • 2 篇 数学
    • 2 篇 统计学(可授理学、...
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 农学

主题

  • 45 篇 landslide suscep...
  • 8 篇 machine learning
  • 7 篇 gis
  • 6 篇 logistic regress...
  • 5 篇 random forest
  • 3 篇 landslides
  • 3 篇 frequency ratio
  • 3 篇 machine learning...
  • 3 篇 geographic infor...
  • 2 篇 tianshan
  • 2 篇 china
  • 2 篇 slope unit
  • 2 篇 landslide type
  • 2 篇 convolutional ne...
  • 1 篇 hybrid models
  • 1 篇 fuzzy logic
  • 1 篇 sichuan-tibet hi...
  • 1 篇 classification m...
  • 1 篇 vic-3l
  • 1 篇 himalaya

机构

  • 2 篇 university of ch...
  • 2 篇 faculty of engin...
  • 2 篇 national joint e...
  • 2 篇 school of civil ...
  • 2 篇 state key labora...
  • 2 篇 institute of mou...
  • 1 篇 geology departme...
  • 1 篇 institute of mou...
  • 1 篇 no.1 regional ge...
  • 1 篇 the university o...
  • 1 篇 center for spati...
  • 1 篇 research fellow ...
  • 1 篇 key laboratory o...
  • 1 篇 school of civil ...
  • 1 篇 university of vi...
  • 1 篇 department of ci...
  • 1 篇 insitute of eart...
  • 1 篇 department of ci...
  • 1 篇 the university o...
  • 1 篇 sichuan higher e...

作者

  • 2 篇 jinsong huang
  • 2 篇 thomas glade
  • 2 篇 jie tang
  • 2 篇 pedro lima
  • 2 篇 wengang zhang
  • 2 篇 wei huang
  • 2 篇 zizheng guo
  • 2 篇 baoying ye
  • 2 篇 faming huang
  • 2 篇 zhenya chen
  • 2 篇 stefan steger
  • 1 篇 ge yong-gang
  • 1 篇 yang rong-hao
  • 1 篇 nadeem ahmad usm...
  • 1 篇 xi chen
  • 1 篇 ju nengpan
  • 1 篇 tianxue liu
  • 1 篇 pattiyage i.a.go...
  • 1 篇 li yao
  • 1 篇 tao cheng

语言

  • 45 篇 英文
检索条件"主题词=Landslide susceptibility"
45 条 记 录,以下是1-10 订阅
排序:
landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed,Gansu Province,China
收藏 引用
Journal of Mountain Science 2017年 第2期14卷 249-268页
作者: DU Guo-liang ZHANG Yong-shuang IQBAL Javed YANG Zhi-hua YAO Xin Key Laboratory of Neotectonic Movement and Geohazard Institute of GeomechanicsChinese Academg of Geological SciencesBeijing 100081China Department of Earth Sciences Abbottabad University of Science and TechnologyAbbottabad 22010Pakistan
Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management
收藏 引用
Geoscience Frontiers 2021年 第6期12卷 243-261页
作者: Zizheng Guo Yu Shi Faming Huang Xuanmei Fan Jinsong Huang Faculty of Engineering China University of GeosciencesWuhan 430074China School of Civil Engineering and Architecture of Engineering Nanchang UniversityNanchang 330031China State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Chengdu University of TechnologyChengdu 610059China ARC Centre of Excellence for Geotechnical Science and Engineering University of NewcastleNSW 2287Australia
Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments, but most studies use GIS-based classification methods to conduct susceptibility *** study presents a mac... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer
收藏 引用
Geoscience Frontiers 2021年 第1期12卷 93-107页
作者: Wei Chen Xi Chen Jianbing Peng Mahdi Panahi Saro Lee College of Geology and Environment Xi’an University of Science and TechnologyXi’an 710054China Key Laboratory of Coal Resources Exploration and Comprehensive Utilization Ministry of Natural ResourcesXi’an 710021China Department of Geological Engineering Chang’an UniversityXi’an 710054China Division of Science Education College of Education#4-301Gangwondaehak-gil Chuncheon-siKangwon National UniversityGangwon-do 24341South Korea Geoscience Platform Research Division Korea Institute of Geoscience and Mineral Resources(KIGAM)124Gwahak-ro Yuseong-guDaejeon 34132South Korea Department of Geophysical Exploration Korea University of Science and Technology217 Gajeong-ro Yuseong-guDaejeon 34113South Korea
As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
landslide susceptibility Mapping in Terms of the Slope-Unit or Raster-Unit,Which is Better?
收藏 引用
Journal of Earth Science 2023年 第2期34卷 386-397页
作者: Siyuan Ma Xiaoyi Shao Chong Xu Key Laboratory of Seismic and Volcanic Hazards Institute of GeologyChina Earthquake AdministrationBeijing 100029China National Institute of Natural Hazards Ministry of Emergency Management of ChinaBeijing 100085China Key Laboratory of Compound and Chained Natural Hazards Dynamics Ministry of Emergency Management of ChinaBeijing 100085China
Choice of appropriate mapping units is important in landslide susceptibility mapping(LSM).There are various possible units for this choice,while it remains unclear which one is better in *** purpose of this study is t... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
landslide susceptibility Mapping and Evaluation along a River Valley in China
收藏 引用
Acta Geologica Sinica(English Edition) 2012年 第4期86卷 1022-1030页
作者: LI Yanrong Adnan AYDIN XIANG Xiqiong JU Nengpan ZHAO Jianjun Ahmet OZBEK The University of Hong Kong.Hong Kong China The University of Mississippi OxfordUSA Key Laboratory of Karst Environment and Geohazard Prevention(Guizhou University) State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology) The University of Kahramanmaras Sutcu Imam K.MarasTurkey
landslide susceptibility evaluation at regional scale is commonly performed based dominantly on the analysis of geological and geomorphological conditions of historical landslide cases. The main content of this type o... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin,Asir Region,Saudi Arabia
收藏 引用
Geoscience Frontiers 2021年 第2期12卷 639-655页
作者: Ahmed Mohamed Youssef Hamid Reza Pourghasemi Geology Department Faculty of ScienceSohag UniversityEgypt Geological Hazards Department Applied Geology SectorSaudi Geological SurveyP.O.Box 54141Jeddah21514Saudi Arabia Department of Natural Resources and Environmental Engineering College of AgricultureShiraz UniversityShirazIran
The current study aimed at evaluating the capabilities of seven advanced machine learning techniques(MLTs),including,Support Vector Machine(SVM),Random Forest(RF),Multivariate Adaptive Regression Spline(MARS),Artifici... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
landslide susceptibility mapping(LSM)based on different boosting and hyperparameter optimization algorithms:A case of Wanzhou District,China
收藏 引用
Journal of Rock Mechanics and Geotechnical Engineering 2024年 第8期16卷 3221-3232页
作者: Deliang Sun Jing Wang Haijia Wen YueKai Ding Changlin Mi Key Laboratory of GIS Application Research Chongqing Normal UniversityChongqing 401331China Key Laboratory of New Technology for Construction of Cities in Mountain Area Ministry of EducationChongqing UniversityChongqing 400045China National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas Chongqing UniversityChongqing 400045China School of Civil Engineering Chongqing UniversityChongqing 400045China Natural Resources Development Service Center of Linyi Linyi 276000China
Boosting algorithms have been widely utilized in the development of landslide susceptibility mapping(LSM)***,these algorithms possess distinct computational strategies and hyperparameters,making it challenging to prop... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Physics-informed optimization for a data-driven approach in landslide susceptibility evaluation
收藏 引用
Journal of Rock Mechanics and Geotechnical Engineering 2024年 第8期16卷 3192-3205页
作者: Songlin Liu Luqi Wang Wengang Zhang Weixin Sun Yunhao Wang Jianping Liu School of Civil Engineering Chongqing UniversityChongqing400045China Key Laboratory of New Technology for Construction of Cities in Mountain Area Chongqing UniversityMinistry of EducationChongqing400045China National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas Chongqing UniversityChongqing400045China Chongqing Field Scientific Observation Station for landslide Hazards in Three Gorges Reservoir Area Chongqing UniversityChongqing400045China Chongqing Mingfeng Construction Engineering Co. LtdChongqing405800China
landslide susceptibility mapping is an integral part of geological hazard ***,the emphasis of many studies has been on data-driven models,notably those derived from machine learning,owing to their aptitude for tacklin... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
GIS based landslide susceptibility Mapping of Tevankarai Ar Sub-watershed,Kodaikkanal,India using Binary Logistic Regression Analysis
收藏 引用
Journal of Mountain Science 2011年 第4期8卷 505-517页
作者: Sujatha E RAMANI Kumarvel PITCHAIMANI Victor Rajamanickam GNANAMANICKAM School of Civil Engineering SASTRA University Indian Institute of Astrophysics Sairam Group of Institutions West Tambaram ChennaiTamilnaduIndia
landslide susceptibility mapping is the first step in regional hazard management as it helps to understand the spatial distribution of the probability of slope failure in an *** attempt is made to map the landslide su... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Incorporating mitigation strategies in machine learning for landslide susceptibility prediction
收藏 引用
Geoscience Frontiers 2024年 第5期15卷 399-414页
作者: Hai-Min Lyu Zhen-Yu Yin Pierre-Yves Hicher Farid Laouafa Key Laboratory for Resilient Infrastructures of Coastal Cities(MOE) College of Civil and Transportation EngineeringShenzhen UniversityShenzhenChina Department of Civil and Environmental Engineering The Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina Research Institute of Civil Engineering and Mechanics(GeM) UMR CNRS 6183Ecole Centrale de NantesFrance National Institute for Industrial Environment and Risks(INERIS) Verneuil-en-HalatteFrance
This study proposes an approach that considers mitigation strategies in predicting landslide susceptibility through machine learning(ML)and geographic information system(GIS)*** models,such as random forest(RF),logist... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论