咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程

主题

  • 1 篇 variational auto...
  • 1 篇 dimensionality r...
  • 1 篇 inductive bias
  • 1 篇 .machine learnin...
  • 1 篇 unsupervised lea...

机构

  • 1 篇 helmholtz instit...
  • 1 篇 jülich aachen re...
  • 1 篇 institute for po...

作者

  • 1 篇 egbert figgemeie...
  • 1 篇 sascha berg
  • 1 篇 akihiro yamashit...

语言

  • 1 篇 英文
检索条件"主题词=Inductive bias"
1 条 记 录,以下是1-10 订阅
排序:
Unsupervised learning of charge-discharge cycles from various lithium-ion battery cells to visualize dataset characteristics and to interpret model performance
收藏 引用
Energy and AI 2024年 第3期17卷 397-405页
作者: Akihiro Yamashita Sascha Berg Egbert Figgemeier Helmholtz Institute Münster:Ionics in Energy Storage(IMD-4/HI MS) Forschungszentrum JülichJülichGermany Institute for Power Electronics and Electrical Drives(ISEA) RWTH Aachen UniversityAachenGermany Jülich Aachen Research Alliance JARA-EnergyGermany
Machine learning (ML) is a rapidly growing tool even in the lithium-ion battery (LIB) research field. To utilize this tool, more and more datasets have been published. However, applicability of a ML model to different... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论