咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 理学
    • 3 篇 数学

主题

  • 3 篇 hilbert’s 16th p...
  • 2 篇 canard solution
  • 2 篇 nonstandard anal...
  • 2 篇 brownian motion
  • 2 篇 stochastic diffe...
  • 2 篇 slow-fast system
  • 1 篇 method of detect...
  • 1 篇 equivariant vect...
  • 1 篇 limit cycle
  • 1 篇 function
  • 1 篇 polynomial syste...

机构

  • 2 篇 deparatment of m...
  • 1 篇 deparatment of m...
  • 1 篇 institute of adm...
  • 1 篇 school of scienc...
  • 1 篇 institute of adm...
  • 1 篇 department of ma...

作者

  • 2 篇 shuya kanagawa
  • 2 篇 kiyoyuki tchizaw...
  • 1 篇 k.w.chung
  • 1 篇 李继彬
  • 1 篇 h.s.y.chan

语言

  • 3 篇 英文
检索条件"主题词=Hilbert’s 16th Problem"
3 条 记 录,以下是1-10 订阅
排序:
Bifurcations of limit cycles in a Z_6-equivariant planar vector field of degree 5
收藏 引用
science China Mathematics 2002年 第7期45卷 817-826页
作者: 李继彬 H.s.Y.Chan K.W.Chung school of science Kunming University of Science and Technology Kunming 650093 China Department of Mathematics City University of Hong Kong Hong Kong Hong Kong
A concrete numerical example of Z6-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 5 having at least 24 limit cycles and the configurations of compound eyes are given by using the bifurcati... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
structural stability in 4-Dimensional Canards
收藏 引用
Advances in Pure Mathematics 2022年 第11期12卷 600-613页
作者: shuya Kanagawa Kiyoyuki Tchizawa Deparatment of Mathematics Tokyo City University Tokyo Japan Deparatment of Mathematics Tokyo Gakugei University Tokyo Japan Institute of Administration Engineering Ltd. Sotokanda Tokyo Japan
Let us consider higher dimensional canards in a sow-fast system R2+2 with a bifurcation parameter. then, the slow manifold sometimes shows various aspects due to the bifurcation. Introducing a key notion “symmetry” ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Canards Flying on Bifurcation
收藏 引用
Advances in Pure Mathematics 2023年 第6期13卷 412-424页
作者: shuya Kanagawa Kiyoyuki Tchizawa Deparatment of Mathematics Tokyo City University Tokyo Japan Institute of Administration Engineering Ltd. Tokyo Japan
there exists a property “structural stability” for “4-dimensional canards” which is a singular-limit solution in a slow-fast system with a bifurcation parameter. It means that the system includes the possibility t... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论