咨询与建议

限定检索结果

文献类型

  • 5 篇 期刊文献

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4 篇 理学
    • 4 篇 数学
  • 1 篇 工学
    • 1 篇 力学(可授工学、理...

主题

  • 5 篇 hausdorff and fr...
  • 3 篇 global attractor
  • 2 篇 attractor
  • 1 篇 strain wave
  • 1 篇 kdv equation
  • 1 篇 mild solution
  • 1 篇 a priori estimat...
  • 1 篇 spatially discre...
  • 1 篇 burger-ginzbur-l...
  • 1 篇 hasegawa-mima eq...
  • 1 篇 weighted norm
  • 1 篇 ginzburg-landau-...

机构

  • 2 篇 department of ma...
  • 1 篇 dept. of math. b...
  • 1 篇 lasg institute o...
  • 1 篇 r&d center for p...
  • 1 篇 institute of app...
  • 1 篇 department of ma...
  • 1 篇 institute of app...
  • 1 篇 center of nonlin...
  • 1 篇 college of mathe...
  • 1 篇 institute of app...

作者

  • 2 篇 郭柏灵
  • 1 篇 bo-ling guo
  • 1 篇 吴永辉
  • 1 篇 mu-rong jiang
  • 1 篇 张瑞凤

语言

  • 5 篇 英文
检索条件"主题词=Hausdorff and fractal dimensions"
5 条 记 录,以下是1-10 订阅
排序:
ATTRACTORS FOR DISCRETIZATION OF GINZBURG-LANDAU-BBM EQUATIONS
收藏 引用
Journal of Computational Mathematics 2001年 第2期19卷 195-204页
作者: Mu-rong Jiang Bo-ling Guo Department of Mathematics Yunnan UniversityKunming 650091China R&D Center for Parallel Software Institute of SoftwareChinese Academy of SciencesBeijing 100080China Institute of Applied Physics and Computational Mathematics Beijing 100088China
Focuses on a study which discreted Ginzburg-Landau-BBM equations with periodic initial boundary value conditions by the finite difference method in spatial direction. Background on the discretization of the equations ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
GLOBAL ATTRACTOR FOR HASEGAWA-MIMA EQUATION
收藏 引用
Applied Mathematics and Mechanics(English Edition) 2006年 第5期27卷 567-574页
作者: 张瑞凤 郭柏灵 College of Mathematics and Information Science Henan UniversityKaifeng 475001Henan ProvinceP. R. China Institute of Applied Physics and Computational Mathematics Beijing 100088P. R. China
The long time behavior of solution of the Hasegawa-Mima equation with dissipation term was considered. The global attractor problem of the Hasegawa-Mima equation with initial periodic boundary condition was studied. A... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Finite Dimension of Global Attractor of Nonlinear Strain Waves in Elastic Waveguides
收藏 引用
Communications in Nonlinear Science and Numerical Simulation 1998年 第3期3卷 173-176页
作者: Dacai MA and Murong JIANG(Department of Mathematics, Shangrao Teacher’s College, Shangrao 334000,China)(Department of Mathematics, Yunnan University, Kunming 650091, China)E-mail: jemail@*** Department of Mathematics Shangrao Teacher's College Shangrao 334000 China Department of Mathematics Yunnan University Kunming 650091 China
Consider herein are the finite dimension of global attractor of nonlinearstrain waves in elastic waveguides. By constructing two appropriate bounded coerciveguadratic forms and analysis of evolution of volume in E1 sp... 详细信息
来源: 同方期刊数据库 同方期刊数据库 评论
On the Burgers-Ginzburg-Landau Equations
收藏 引用
Communications in Nonlinear Science and Numerical Simulation 1998年 第3期3卷 143-147页
作者: Boling GUO and Haiyang HUANG(Center of Nonlinear Studies. Institute of Applied Physics and ComputationalMathematics, Beijing, 100088. China)(Dept. of Math. Beijing Normal University. Beijing 100875. China)E-mail: hhywsg@*** Center of Nonlinear Studies Inst. Appl. Phys. and Compl. Math. Beijing 100088 China Dept. of Math. Beijing Normal University Beijing 100875 China
In this paper we consider the Burger-Ginzburg-Landau equations. and provethe existence of the global attractor in with finite hausdorff and fractaldimensions.
来源: 同方期刊数据库 同方期刊数据库 评论
GLOBAL ATTRACTOR AND ITS DIMENSION ESTIMATES FOR THE GENERALIZED DISSIPATIVE KdV EQUATION ON R
收藏 引用
Acta Mathematicae Applicatae Sinica 1998年 第3期14卷 252-259页
作者: 郭柏灵 吴永辉 Institute of Applied Physics and Computational Mathematics Beijing China LASG Institute of Atmospheric Physics the chinese Academy of Sciences Beijing China
In this paper we prove the existence of global attractor for the generalized dissipative KdVequation on R, and give an upper bound for its hausdorff and fractal dimensions.
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论