咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 19 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 19 篇 工学
    • 13 篇 机械工程
    • 10 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 9 篇 控制科学与工程
    • 4 篇 仪器科学与技术
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 信息与通信工程
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 公安技术
  • 9 篇 管理学
    • 9 篇 管理科学与工程(可...
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 理学
    • 1 篇 系统科学
  • 1 篇 医学
    • 1 篇 临床医学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 19 篇 feature learning
  • 3 篇 person re-identi...
  • 2 篇 neural networks
  • 2 篇 fault detection
  • 2 篇 feature selectio...
  • 1 篇 object detection
  • 1 篇 fault diagnosis
  • 1 篇 reinforcement le...
  • 1 篇 quantum computin...
  • 1 篇 voc 2012 dataset
  • 1 篇 variational auto...
  • 1 篇 deep boltzmann m...
  • 1 篇 deep learning
  • 1 篇 svm
  • 1 篇 structural spars...
  • 1 篇 adaptive dynamic...
  • 1 篇 finger vein reco...
  • 1 篇 texture classifi...
  • 1 篇 local linear emb...
  • 1 篇 intra-class dive...

机构

  • 1 篇 school of inform...
  • 1 篇 school of comput...
  • 1 篇 kit-karlsruhe in...
  • 1 篇 school of softwa...
  • 1 篇 school of automa...
  • 1 篇 institute of com...
  • 1 篇 the fifth instit...
  • 1 篇 key laboratory o...
  • 1 篇 lanzhou universi...
  • 1 篇 school of automa...
  • 1 篇 northeastern uni...
  • 1 篇 school of comput...
  • 1 篇 area science par...
  • 1 篇 department of la...
  • 1 篇 state key labora...
  • 1 篇 school of materi...
  • 1 篇 department of co...
  • 1 篇 research softwar...
  • 1 篇 national enginee...
  • 1 篇 school of comput...

作者

  • 1 篇 feng liu
  • 1 篇 pareshwar prasad...
  • 1 篇 lun yu
  • 1 篇 wanru song
  • 1 篇 sulai liu
  • 1 篇 lucai wang
  • 1 篇 hemant petwal
  • 1 篇 yilong yin
  • 1 篇 chenglong li
  • 1 篇 xiaofeng yuan
  • 1 篇 gongping yang
  • 1 篇 zhaopeng dou
  • 1 篇 qiang zhao
  • 1 篇 zhiqin zhu
  • 1 篇 ding wang
  • 1 篇 yanli wang
  • 1 篇 hu ruimin
  • 1 篇 de-rong liu
  • 1 篇 赵宇宙
  • 1 篇 陈宗海

语言

  • 18 篇 英文
  • 1 篇 中文
检索条件"主题词=Feature learning"
19 条 记 录,以下是1-10 订阅
排序:
feature Selection and feature learning for High-dimensional Batch Reinforcement learning: A Survey
收藏 引用
International Journal of Automation and computing 2015年 第3期12卷 229-242页
作者: De-Rong Liu Hong-Liang Li Ding Wang State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences
Tremendous amount of data are being generated and saved in many complex engineering and social systems every *** is significant and feasible to utilize the big data to make better decisions by machine learning techniq... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
SuperFeat:Quantitative feature learning from Single-cell RNA-seq Data Facilitates Drug Repurposing
收藏 引用
Genomics, Proteomics & Bioinformatics 2024年 第3期22卷 91-105页
作者: Jianmei Zhong Junyao Yang Yinghui Song Zhihua Zhang Chunming Wang Renyang Tong Chenglong Li Nanhui Yu Lianhong Zou Sulai Liu Jun Pu Wei Lin State Key Laboratory for Oncogenes and Related Genes Department of CardiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai Cancer InstituteShanghai 200127China Department of Laboratory Medicine Xin Hua HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai 200092China Central Laboratory of Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University Changsha 410005China
In this study,we devised a computational framework called Supervised feature learning and Scoring(SuperFeat)which enables the training of a machine learning model and evaluates the canonical cellular statuses/features... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Deep learning,feature learning,and Clustering Analysis for SEM Image Classification
收藏 引用
Data Intelligence 2020年 第4期2卷 513-528页
作者: Rossella Aversa Piero Coronica Cristiano De Nobili Stefano Cozzini National Research Council-Istituto Officina dei Materiali(CNR-IOM) 34136 TriesteItaly KIT-Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 176344 Eggenstein-LeopoldshafenGermany Research Software Engineering University of CambridgeCambridge CB30FAUK Freelance at *** Area Science Park Padriciano 9934149 TriesteItaly
In this paper,we report upon our recent work aimed at improving and adapting machine learning algorithms to automatically classify nanoscience images acquired by the Scanning Electron Microscope(SEM).This is done by c... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
A spatial temporal neighborhood preserving method for feature learning with an industrial application
A spatial temporal neighborhood preserving method for featur...
收藏 引用
第32届中国过程控制会议(CPCC2021)
作者: Chenliang Liu Yalin Wang Kai Wang Xiaofeng Yuan School of Automation Central South University
Modern industrial process data often exhibit nonlinear and dynamic *** deep learning methods,such as stacked autoencoder(SAE),have excellent nonlinear feature learning capabilities,but they ignore the dynamic correlat... 详细信息
来源: cnki会议 评论
A Tensorflow Based feature learning Method Application in Fault Detecting of Tract Motor
A Tensorflow Based Feature Learning Method Application in Fa...
收藏 引用
第30届中国控制与决策会议
作者: Wang Huizhong Qiao Linhan He Keke Lanzhou University of Technology
In purpose of detecting the inner and outer ring faults of tractor motor,one feature learning method,Variationa AutoEncoder,which based on Tensorflow,was cited to process the motor vibration *** method firstly normali... 详细信息
来源: cnki会议 评论
Industrial Process Fault Diagnosis Based on Contrastive Clustering-Assisted Discriminative feature learning
Industrial Process Fault Diagnosis Based on Contrastive Clus...
收藏 引用
第43届中国控制会议
作者: Sheng Wang Yinghua Han Qiang Zhao Jinkuan Wang Northeastern University Northeastern University at Qinhuangdao
In the realm of industrial process automation,the escalating complexity of systems and the surge of data from developments like the Industrial Internet of Things(IIoT) have underscored the urgent need for efficient an... 详细信息
来源: cnki会议 评论
An unsupervised feature learning for quantum-classical convolutional network with applications to fault detection
An unsupervised feature learning for quantum-classical convo...
收藏 引用
第40届中国控制会议
作者: Tong Dou Kaiwei Wang Zhenwei Zhou Shilu Yan Wei Cui School of Automation Seience and Engineering South China University of Technology The Fifth Institute of Electronics Ministry of Industry and Information Technology
Combining the advantages of quantum computing and neural networks, quantum neural networks(QNNs) have gained considerable attention recently. However, because of the lack of quantum resource, it is costly to train Q... 详细信息
来源: cnki会议 评论
Exploiting multi-channels deep convolutional neural networks for multivariate time series classification
收藏 引用
Frontiers of Computer Science 2016年 第1期10卷 96-112页
作者: Yi ZHENG QiLIU Enhong CHEN Yong GE J. Leon ZHAO School of Computer Science and Technology University of Science and Technology of China Hefei 230027 China Department of Computer Science University of North Carolina at Charlotte Charlotte 28223 USA Department of Information Systems City University of Hong Kong Hong Kong China
Time series classification is related to many dif- ferent domains, such as health informatics, finance, and bioinformatics. Due to its broad applications, researchers have developed many algorithms for this kind of ta... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Improving Semantic Part features for Person Re-identification with Supervised Non-local Similarity
收藏 引用
Tsinghua Science and Technology 2020年 第5期25卷 636-646页
作者: Yifan Sun Zhaopeng Dou Yali Li Shengjin Wang the Department of Electronic Engineering Tsinghua UniversityBeijing 100084China
In person re-IDentification (re-ID) task,the learning of part-level features benefits from fine-grained *** facilitate part alignment,which is a prerequisite for learning part-level features,a popular approach is to d... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Anchor-based manifold binary pattern for finger vein recognition
收藏 引用
Science China(Information Sciences) 2019年 第5期62卷 129-144页
作者: Haiying LIU Gongping YANG Lu YANG Kun SU Yilong YIN School of Software Shandong University School of Computer Science and Technology Shandong University of Finance and Economics
This paper proposes a novel learning method of binary local features for recognition of the finger vein. The learning methods existing in local features for image recognition intend to maximize the data variance, redu... 详细信息
来源: 同方期刊数据库 同方期刊数据库 评论