咨询与建议

限定检索结果

文献类型

  • 4 篇 期刊文献

馆藏范围

  • 4 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4 篇 理学
    • 4 篇 数学
  • 1 篇 工学
    • 1 篇 光学工程

主题

  • 4 篇 discrete nonline...
  • 1 篇 ablowitz-ladik m...
  • 1 篇 non-nehari manif...
  • 1 篇 sign-changing so...
  • 1 篇 critical point t...
  • 1 篇 superlinear
  • 1 篇 nonlinear steepe...
  • 1 篇 nonlinear lattic...
  • 1 篇 nonperiodic boun...
  • 1 篇 standing wave
  • 1 篇 ground state sol...
  • 1 篇 inverse scatteri...
  • 1 篇 symplectic integ...
  • 1 篇 next-nearest nei...

机构

  • 1 篇 college of compu...
  • 1 篇 department of ma...
  • 1 篇 department of ma...
  • 1 篇 school of mathem...
  • 1 篇 department of ma...

作者

  • 1 篇 tie-shan he
  • 1 篇 meng zhang
  • 1 篇 peng-fei guo
  • 1 篇 王燕
  • 1 篇 hideshi yamane
  • 1 篇 xian hua tang
  • 1 篇 kai-hao liang

语言

  • 4 篇 英文
检索条件"主题词=Discrete nonlinear Schrodinger equation"
4 条 记 录,以下是1-10 订阅
排序:
Asymptotic behavior of solutions of defocusing integrable discrete nonlinear schrodinger equation
收藏 引用
Frontiers of Mathematics in China 2013年 第5期8卷 1077-1083页
作者: Hideshi YAMANE Department of Mathematical Sciences Kwansei Gakuin University Sanda 669-1337 Japan
We report our recent result about the long-time asymptotics for the defocusing integrable discrete nonlinear schrodinger equation of Ablowitz- Ladik. The leading term is a sum of two terms that oscillate with decay of... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Self-Trapping in discrete nonlinear schrodinger equation with Next-Nearest Neighbor Interaction
收藏 引用
Communications in Theoretical Physics 2013年 第5期59卷 643-648页
作者: 王燕 Department of Mathematics Shanghai University Department of Mathematics Luoyang Normal University
The dynamical self-trapping of an excitation propagating on one-dimensional of different sizes with nextnearest neighbor (NNN) interaction is studied by means of an explicit fourth order symplectic integrator. Using l... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Standing Waves for discrete nonlinear schrodinger equations with Nonperiodic Bounded Potentials
收藏 引用
Acta Mathematicae Applicatae Sinica 2019年 第2期35卷 374-385页
作者: Tie-shan HE Meng ZHANG Kai-hao LIANG Peng-fei GUO College of Computation Science Zhongkai University of Agriculture and Engineering
In this paper, we investigate standing waves in discrete nonlinear Schr?dinger equations with nonperiodic bounded potentials. By using the critical point theory and the spectral theory of self-adjoint operators, we pr... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Non-Nehari Manifold Method for Periodic discrete Superlinear Schr(o|¨)dinger equation
收藏 引用
Acta Mathematica Sinica,English Series 2016年 第4期32卷 463-473页
作者: Xian Hua TANG School of Mathematics and Statistics Central South University
We consider the nonlinear difference equations of the form Lu=f(n,u),n∈Z,where L is a Jacobi operator given by(Lu)(n)=a(n)u(n+1)+a(n-1)u(n-1)+b(n)u(n) for n ∈Z,{a(n)} and {b(n)} are real val... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论