咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 理学
    • 2 篇 数学

主题

  • 2 篇 diophantine equa...
  • 2 篇 pythagorician tr...
  • 2 篇 pythagoras equat...
  • 1 篇 factorisation in...
  • 1 篇 factorisation-gc...
  • 1 篇 fermat's equatio...
  • 1 篇 pythagorician di...
  • 1 篇 greatest common ...
  • 1 篇 4-integral closu...
  • 1 篇 fermat's divisor...

机构

  • 1 篇 laboratoire d’in...
  • 1 篇 ufr math&#233 ma...
  • 1 篇 ufr mathématique...
  • 1 篇 laboratoire d&#8...
  • 1 篇 ufr sciences fon...

作者

  • 2 篇 prosper kouadio ...
  • 2 篇 françois emmanue...
  • 1 篇 kouassi vincent ...

语言

  • 2 篇 英文
检索条件"主题词=Diophantine Equations of Degree 2"
2 条 记 录,以下是1-10 订阅
排序:
Fermat and Pythagoras Divisors for a New Explicit Proof of Fermat217;s Theorem:a4 + b4 = c4. Part I
收藏 引用
Advances in Pure Mathematics 2024年 第4期14卷 303-319页
作者: Prosper Kouadio Kimou François Emmanuel Tanoé Kouassi Vincent Kouakou Laboratoire d217 Informatique et de Math&#233matiques appliqu&#233es Institut Polytechnique F&#233lix Houphou&#235t BOIGNY Yamoussoukro Cote d&#8217Ivoire UFR Math&#233 matiques et Informatique Universit&#233 F&#233lix Houphouet BOIGNY Abidjan Cote d&#8217Ivoire UFR Sciences Fondamentales Appliqu&#233 es Universit&#233 NANGUI ABROGOUA Abidjan Cote d&#8217Ivoire
In this paper we prove in a new way, the well known result, that Fermat’s equation a4 + b4 = c4, is not solvable in ℕ , when abc≠0 . To show this result, it suffices to prove that: ( F 0 ): a 1 4 + ( 2 s b 1 ) 4 = c... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Pythagorician Divisors and Applications to Some diophantine equations
收藏 引用
Advances in Pure Mathematics 2023年 第2期13卷 35-70页
作者: François Emmanuel Tanoé Prosper Kouadio Kimou UFR Mathématiques et Informatique. Université Félix Houphou&#235 t BOIGNY Abidjan C&#244te D’ivoire Laboratoire d’Informatique et de Mathématiques Appliquées. Institut Polytechnique Félix Houphou&#235 t BOIGNY Yamoussoukro C&#244te D’ivoire
We consider the Pythagoras equation X2 +Y2 = Z2, and for any solution of the type (a,b = 2sb1 ≠0,c) ∈ N*3, s ≥ 2, b1odd, (a,b,c) ≡ (±1,0,1)(mod 4), c > a , c > b, and gcd(a,b,c) = 1, we then prove the Pythagorici... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论