咨询与建议

限定检索结果

文献类型

  • 49 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 57 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 50 篇 工学
    • 28 篇 计算机科学与技术...
    • 25 篇 机械工程
    • 18 篇 控制科学与工程
    • 17 篇 软件工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 航空宇航科学与技...
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 测绘科学与技术
    • 1 篇 地质资源与地质工...
    • 1 篇 轻工技术与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 17 篇 管理学
    • 16 篇 管理科学与工程(可...
    • 1 篇 农林经济管理
  • 4 篇 理学
    • 2 篇 数学
    • 1 篇 地理学
    • 1 篇 生物学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 农学
    • 1 篇 畜牧学
  • 1 篇 医学
    • 1 篇 中医学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 57 篇 action recogniti...
  • 10 篇 deep learning
  • 4 篇 neural network
  • 3 篇 features selecti...
  • 3 篇 transfer learnin...
  • 3 篇 feature fusion
  • 3 篇 features fusion
  • 3 篇 convolutional ne...
  • 3 篇 convolutional ne...
  • 2 篇 residual network
  • 2 篇 video classifica...
  • 2 篇 skeleton
  • 2 篇 3d cnns
  • 2 篇 entropy
  • 2 篇 human activity r...
  • 2 篇 blazepose
  • 1 篇 abnormal action ...
  • 1 篇 sparse model
  • 1 篇 channel state in...
  • 1 篇 vision transform...

机构

  • 2 篇 electronic and e...
  • 2 篇 college of compu...
  • 2 篇 department of co...
  • 2 篇 department of co...
  • 2 篇 college of compu...
  • 2 篇 department of co...
  • 1 篇 school of inform...
  • 1 篇 school of automa...
  • 1 篇 institute of art...
  • 1 篇 institute for re...
  • 1 篇 faculty of robot...
  • 1 篇 college of infor...
  • 1 篇 college of infor...
  • 1 篇 the school of el...
  • 1 篇 fudan university...
  • 1 篇 school of comput...
  • 1 篇 harbin institute...
  • 1 篇 zte corporation ...
  • 1 篇 东南大学
  • 1 篇 department of co...

作者

  • 5 篇 muhammad attique...
  • 4 篇 usman tariq
  • 3 篇 yunyoung nam
  • 3 篇 miguel rio
  • 3 篇 majed alhaisoni
  • 3 篇 motasem s.alsawa...
  • 2 篇 el-sayed m.el-ke...
  • 2 篇 hu ruimin
  • 2 篇 chen chen
  • 2 篇 yang wu
  • 2 篇 hichem snoussi
  • 2 篇 tian wang
  • 2 篇 jiakun li
  • 2 篇 chen jun
  • 2 篇 muhammad naeem a...
  • 1 篇 yanwu xu
  • 1 篇 chongkai yu
  • 1 篇 夏利民
  • 1 篇 jian jia
  • 1 篇 zhinan chen

语言

  • 53 篇 英文
  • 4 篇 中文
检索条件"主题词=Action recognition"
57 条 记 录,以下是1-10 订阅
排序:
action recognition with Temporal Scale-Invariant Deep Learning Framework
收藏 引用
China Communications 2017年 第2期14卷 163-172页
作者: Huafeng Chen Jun Chen Ruimin Hu Chen Chen Zhongyuan Wang State Key Laboratory of Software Engineering Wuhan University Wuhan 430072 China National Engineering Research Center for Multimedia Software Computer School of Wuhan University Wuhan 430072 China Center for Research in Computer Vision University of Central Florida Orlando FL 32816 USA
Recognizing actions according to video features is an important problem in a wide scope of applications. In this paper, we propose a temporal *** deep learning framework for action recognition, which is robust to the ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
action recognition Based on CSI Signal Using Improved Deep Residual Network Model
收藏 引用
Computer Modeling in Engineering & Sciences 2022年 第3期130卷 1827-1851页
作者: Jian Zhao Shangwu Chong Liang Huang Xin Li Chen He Jian Jia School of Information Science and Technology Northwest UniversityXi’an710127China School of Mathematics Northwest UniversityXi’an710127China
In this paper,we propose an improved deep residual network model to recognize human *** data is composed of channel state information signals,which are continuous fine-grained *** replaced the traditional identity con... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
action recognition and Detection Based on Deep Learning: A Comprehensive Summary
收藏 引用
Computers, Materials & Continua 2023年 第10期77卷 1-23页
作者: Yong Li Qiming Liang Bo Gan Xiaolong Cui College of Information Engineering Engineering University of PAPXi’an710086China PAP of Heilongjiang Province Heihe DetachmentHeihe164300China National Key Laboratory of Science and Technology on Electromagnetic Energy Naval University of EngineeringWuhan430033China Joint Laboratory of Counter Terrorism Command and Information Engineering Engineering University of PAPXi’an710086China
action recognition and detection is an important research topic in computer vision,which can be divided into action recognition and action *** present,the distinction between action recognition and action detection is... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
action recognition from Videos with Complex Background via Transfer Learning
收藏 引用
Journal of Donghua University(English Edition) 2010年 第2期27卷 199-203页
作者: 林贤明 李绍滋 张洪博 刘姝 Department of Cognitive Science Fujian Key Laboratory of the Brain-like Intelligent SystemsXiamen University
Classifier learning methods commonly assume that the training data and the testing data are drawn from the same underlying distribution. However, in many practical situations, this assumption is violated. One examp... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
ResLNet:deep residual LSTM network with longer input for action recognition
收藏 引用
Frontiers of Computer Science 2022年 第6期16卷 41-49页
作者: Tian WANG Jiakun LI Huai-Ning WU Ce LI Hichem SNOUSSI Yang WU Institute of Artificial Intelligence Beihang UniversityBeijing100191China School of Automation Science and Electrical Engineering Beihang UniversityBeijing100191China College of Electrical and Information Engineering Lanzhou University of TechnologyLanzhou730050China Institute Charles Delaunay-LM2S FRE CNRS 2019 University of Technology of TroyesTroyes10010France Institute for Research Initiatives Nara Institute of Science and TechnologyNara630-0192Japan
action recognition is an important research topic in video analysis that remains very *** recognition relies on learning a good representation of both spatial information(for appearance)and temporal information(for mo... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Two-Stream Temporal Convolutional Networks for Skeleton-Based Human action recognition
收藏 引用
Journal of Computer Science & Technology 2020年 第3期35卷 538-550页
作者: Jin-Gong Jia Yuan-Feng Zhou Xing-Wei Hao Feng Li Christian Desrosiers Cai-Ming Zhang School of Software Shandong UniversityJinan 250101China Department of Software and IT Engineering University of QuebecMontreal H3C 3P8Canada
With the growing popularity of somatosensory interaction devices,human action recognition is becoming attractive in many application ***-based action recognition is effective because the skeleton can represent the pos... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Segment differential aggregation representation and supervised compensation learning of ConvNets for human action recognition
收藏 引用
Science China(Technological Sciences) 2024年 第1期67卷 197-208页
作者: REN ZiLiang ZHANG QieShi CHENG Qin XU ZhenYu YUAN Shuai LUO DeLin School of Computer Science and Technology Dongguan University of TechnologyDongguan 523808China Shenzhen Institute of Advanced Technology Chinese Academy of SciencesShenzhen 518055China School of Electronic Engineering and Automation Guilin University of Electronic TechnologyGuilin 541004China Department of the mechanical engineering Erlangen-Nuremberg UniversityErlangen 91508Germany School of Aerospace Engineering Xiamen UniversityXiamen 361102China
With more multi-modal data available for visual classification tasks,human action recognition has become an increasingly attractive ***,one of the main challenges is to effectively extract complementary features from ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 同方期刊数据库 同方期刊数据库 评论
Skeleton-based Violation action recognition Method for Safety Supervision in Operation Field of Distribution Network Based on Graph Convolutional Network
收藏 引用
CSEE Journal of Power and Energy Systems 2023年 第6期9卷 2179-2187页
作者: Bo Wang Fuqi Ma Rong Jia Peng Luo Xuzhu Dong the School of Electrical Engineering and Automation Wuhan UniversityWuhan 430072China the School of Electrical Engineering Xi’an University of TechnologyXi’an 710054China
Safety accidents in the operation field of the distribution network often occur,which seriously endanger the safety and lives of *** identification methods for safety risk can identify static safety risks,such as no-h... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
action recognition from arbitrary views using 3D-key-pose set
收藏 引用
Frontiers of Electrical and Electronic Engineering in China 2012年 第2期7卷 224-241页
作者: Junxia GU Xiaoqing DING Shenjing WANG Department of Electronic Engineering Tsinghua UniversityBeijing 100084China
Recovering three-dimensional (3D) human pose sequence from arbitrary view is very difficult, due to loss of depth information and self-occlusion. In this paper, view-independent 3D-key-pose set is selected from 3D a... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Learning a discriminative mid-level feature for action recognition
收藏 引用
Science China(Information Sciences) 2014年 第5期57卷 195-207页
作者: LIU CuiWei PEI MingTao WU XinXiao KONG Yu JIA YunDe Beijing Laboratory of Intelligent Information Technology School of Computer ScienceBeijing Institute of Technology
In this paper,we address the problem of recognizing human actions from *** of the existing approaches employ low-level features(e.g.,local features and global features)to represent an action ***,algorithms based on lo... 详细信息
来源: 同方期刊数据库 同方期刊数据库 评论