咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 理学
    • 1 篇 数学
    • 1 篇 统计学(可授理学、...
  • 1 篇 工学
    • 1 篇 电气工程

主题

  • 2 篇 accelerated algo...
  • 1 篇 deep learning
  • 1 篇 learning rate
  • 1 篇 variable reducti...
  • 1 篇 data driven
  • 1 篇 unit commitment
  • 1 篇 backpropagation
  • 1 篇 stochastic gradi...
  • 1 篇 momentum

机构

  • 1 篇 systems engineer...
  • 1 篇 electrical and c...
  • 1 篇 ieee
  • 1 篇 electrical and c...
  • 1 篇 klatasds-moe sch...

作者

  • 1 篇 yongqiang lian
  • 1 篇 qiaozhu zhai
  • 1 篇 moammad shahideh...
  • 1 篇 lei wu
  • 1 篇 shirong zhou
  • 1 篇 yuzhou zhou
  • 1 篇 yincai tang

语言

  • 2 篇 英文
检索条件"主题词=Accelerated algorithm"
2 条 记 录,以下是1-10 订阅
排序:
Research on three-step accelerated gradient algorithm in deep learning
收藏 引用
Statistical Theory and Related Fields 2022年 第1期6卷 40-57页
作者: Yongqiang Lian Yincai Tang Shirong Zhou KLATASDS-MOE School of StatisticsEast China Normal UniversityShanghaiPeople's Republic of China
Gradient descent(GD)algorithm is the widely used optimisation method in training machine learning and deep learning *** this paper,based on GD,Polyak’s momentum(PM),and Nesterov accelerated gradient(NAG),we give the ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
A Data-driven Variable Reduction Approach for Transmission-constrained Unit Commitment of Large-scale Systems
收藏 引用
Journal of Modern Power Systems and Clean Energy 2023年 第1期11卷 254-266页
作者: Yuzhou Zhou Qiaozhu Zhai Lei Wu Moammad Shahidehpour Systems Engineering Institute MOEKLINNS LabXi’an Jiaotong UniversityXi’an 710049China Electrical and Computer Engineering Department Stevens Institute of TechnologyHobokenU.S. Electrical and Computer Engineering Department Illinois Institute of TechnologyChicagoU.S. IEEE
This paper presents a data-driven variable reduction approach to accelerate the computation of large-scale transmission-constrained unit commitment(TCUC).Lagrangian relaxation(LR)and mixed-integer linear programming(M... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论