超高温氧化物陶瓷凭借优异的高温强度、高温组织稳定性、抗氧化和耐腐蚀等特性,有望成为在高温氧化环境下长期服役的新一代超高温结构材料,在航空航天领域具有广泛的应用前景。激光增材制造(Laser Additive Manufacturing, LAM)技术具有快速近净成型、无需模具以及灵活制造复杂形状等优点,近年来被应用于超高温氧化物陶瓷的制备并成为研究热点。然而陶瓷在LAM过程中极易产生孔隙缺陷,不仅不利于试样后续的沉积,而且易恶化成型样件表面质量与力学性能。本文首先概述了选区激光烧结(Selective Laser Sintering, SLS)、激光粉末床熔融(Laser Power Bed Fusion, LPBF)和激光定向能量沉积(Laser Directed Energy Deposition, LDED)三种LAM技术的基本原理及工艺特点,重点分析了LAM超高温氧化物陶瓷过程中的孔隙缺陷特征、熔池流动特点及孔隙缺陷的形成机理,并从工艺参数优化、外场辅助和第二相掺杂三个方面详细阐述了LAM超高温氧化物陶瓷孔隙缺陷抑制的研究进展。最后,总结了LAM超高温氧化物陶瓷实现工程化应用面临的挑战,并在成型缺陷抑制、粉末特性和后续热处理工艺等方面展望了该领域的发展趋势和突破点。
暂无评论