咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电子科学与技术(可...

主题

  • 1 篇 reviews annotati...
  • 1 篇 annotation
  • 1 篇 text annotation
  • 1 篇 semi-annotated t...
  • 1 篇 natural language...
  • 1 篇 corpus annotatio...
  • 1 篇 machine learning

机构

  • 1 篇 computer and inf...
  • 1 篇 department of co...

作者

  • 1 篇 muhammad khurram...
  • 1 篇 unaza sajid
  • 1 篇 muhammad aasim q...
  • 1 篇 mohd fadzil hass...
  • 1 篇 ghulam mustafa
  • 1 篇 aasim ali
  • 1 篇 muhammad asif

语言

  • 1 篇 英文
检索条件"基金资助= Mr. Umar Shoukat"
1 条 记 录,以下是1-10 订阅
排序:
A Novel Auto-Annotation Technique for Aspect Level Sentiment Analysis
收藏 引用
Computers, Materials & Continua 2022年 第3期70卷 4987-5004页
作者: Muhammad Aasim Qureshi Muhammad Asif Mohd Fadzil Hassan Ghulam Mustafa Muhammad Khurram Ehsan Aasim Ali Unaza Sajid Department of Computer Sciences Bahria UniversityLahore Campus54000Pakistan Computer and Information Science Department University TeknologiPetronas32610Malaysia
In machine learning,sentiment analysis is a technique to find and analyze the sentiments hidden in the *** sentiment analysis,annotated data is a basic ***,this data is manually *** annotation is time consuming,costly... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论