Aerosol hygroscopicity and liquid water content(ALWC)have important influences on the environmental and climate effect of *** this study,we measured the hygroscopic growth factors(GF)of particles with dry diameters of...
详细信息
Aerosol hygroscopicity and liquid water content(ALWC)have important influences on the environmental and climate effect of *** this study,we measured the hygroscopic growth factors(GF)of particles with dry diameters of 40,80,150,and 200 nm during the wintertime in *** the GF-derived hygroscopicity parameter(κ_(gf))and ALWC increased with particle size,but displayed differing diurnal variations,withκ_(gf)peaking around the midday,while ALWC peaking in the early ***,ammonium and oxygenated organic aerosols(OOA)were found as the chemical components mostly strongly correlated with ALWC.A closure study suggests that during midday photo-oxidation and nighttime high ALWC periods,theκof organic aerosols(κ_(org))was underestimated when using previous ***,we re-constructed parameterizations forκ_(org)and the oxidation level of organics for these periods,which indicates a higher hygroscopicity of photochemically formed OOA than the aqueous OOA,yet both being much higher than the generally assumed OOA ***,in a typical high ALWC episode,concurrently increased ALWC,nitrate,OOA as well as aerosol surface area and mass concentrations were observed under elevated ambient *** strongly indicates a coupled effect that the hygroscopic secondary aerosols,in particular nitratewith strong hygroscopicity,led to large increase in ALWC,which in turn synergistically boosted nitrate and OOA formation by heterogeneous/aqueous *** interaction may represent an important mechanism contributing to enhanced formation of secondary aerosols and rapid growth of fine particulate matter under relatively high RH conditions.
As a main form of biomass burning in agricultural countries, crop residue burning is a significant source of atmospheric fine particles. In this study, the aging of particles emitted from the burning of four major cro...
详细信息
As a main form of biomass burning in agricultural countries, crop residue burning is a significant source of atmospheric fine particles. In this study, the aging of particles emitted from the burning of four major crop residues in China was investigated in a smog *** particle size distribution, chemical composition and cloud condensation nuclei(CCN)activity were simultaneously measured. The properties of crop residue burning particles varied substantially among different fuel types. During aging, the particle size and mass concentration increased substantially, suggesting condensational growth by formation of secondary aerosols. The particle composition was dominated by organics. Aging resulted in considerable enhancement of organics and inorganics, with enhancement ratios of 1.24–1.44 and 1.33–1.76 respectively, as well as a continuous increase in the oxidation level of organics. Elevated CCN activity was observed during aging, with the hygroscopicity parameter κ varying from 0.16 to 0.34 for fresh particles and 0.19 to 0.40 for aged *** on the volume mixing rule, the hygroscopicity parameter of organic components(κorg) was derived. κorgexhibited an increasing tendency with aging, which was generally consistent with the tendency of the O:C ratio, indicating that the oxidation level was related to the hygroscopicity and CCN activity of organic aerosols from crop residue burning. Our results indicated that photochemical aging could significantly impact the CCN activation of crop burning aerosols, not only by the production of secondary aerosols, but also by enhancing the hygroscopicity of organic components, thereby contributing to the aerosol indirect climate forcing.
Rotating radio transients(RRATs) are peculiar astronomical objects whose emission mechanism remains under *** this paper, we present observations of three RRATs, J1538+2345, J1854+0306 and J1913+1330, carried out with...
详细信息
Rotating radio transients(RRATs) are peculiar astronomical objects whose emission mechanism remains under *** this paper, we present observations of three RRATs, J1538+2345, J1854+0306 and J1913+1330, carried out with the Fivehundred-meter Aperture Spherical radio Telescope(FAST). Specifically, we analyze the mean pulse profiles and temporal flux density evolutions of the RRATs. Owing to the high sensitivity of FAST, the derived burst rates of the three RRATs are higher than those in previous reports. RRAT J1854+0306 exhibited a time-dynamic mean pulse profile, whereas RRAT J1913+1330 showed distinct radiation and nulling segments on its pulse intensity trains. The mean pulse profile variation with frequency is also studied for RRAT J1538+2345 and RRAT J1913+1330, and the profiles at different frequencies could be well fitted with a cone-core model and a conal-beam model, respectively.
With the largest dish Five-hundred-meter Aperture Spherical radio Telescope(FAST), both the mean and single pulses of PSR B2016+28, especially including the single-pulse structure, are investigated in detail in this s...
详细信息
With the largest dish Five-hundred-meter Aperture Spherical radio Telescope(FAST), both the mean and single pulses of PSR B2016+28, especially including the single-pulse structure, are investigated in detail in this study. The mean pulse profiles at different frequencies can be well fitted in a conal model, and the peak separation of intensity-dependent pulse profiles increases with intensity. The integrated pulses are obviously frequency dependent(pulse width decreases by ~20% as frequency increases from 300 to 750 MHz), but the structure of single pulses changes slightly(the corresponding correlation scale decreases by only~1%). This disparity between mean and single pulses provides independent evidence for the existence of the RS-type vacuum inner gap, indicating a strong bond between particles on the pulsar surface. Diffused drifting sub-pulses are analyzed. The results show that the modulation period along pulse series(P_3) is positively correlated to the separation between two adjacent sub-pulses(P_2). This correlation may hint a rough surface on the pulsar, eventually resulting in the irregular drift of sparks. All the observational results may have significant implications in the dynamics of pulsar magnetosphere and are discussed extensively in this paper.
暂无评论