咨询与建议

限定检索结果

文献类型

  • 8 篇 期刊文献

馆藏范围

  • 8 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8 篇 理学
    • 8 篇 数学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 4 篇 goldbach’s conje...
  • 3 篇 twin primes
  • 3 篇 prime gaps
  • 3 篇 prime-number-for...
  • 2 篇 zeta function
  • 2 篇 primes as contin...
  • 2 篇 complete-prime-n...
  • 1 篇 k-tuples of prim...
  • 1 篇 erratum
  • 1 篇 critical line
  • 1 篇 density of prime...
  • 1 篇 infinite polynom...
  • 1 篇 shifting to the ...
  • 1 篇 gamma function

机构

  • 5 篇 independent rese...
  • 3 篇 independent rese...

作者

  • 8 篇 horacio keller
  • 5 篇 pal doroszlai
  • 3 篇 pál doroszlai

语言

  • 8 篇 英文
检索条件"作者=horacio Keller"
8 条 记 录,以下是1-10 订阅
排序:
The Gaps between Primes
收藏 引用
Advances in Pure Mathematics 2022年 第12期12卷 757-771页
作者: Pal Doroszlai horacio keller Independent Researcher Kékkút Hungary
The union of the straight and—of the over a point of reflection—reflected union of the series of the arithmetic progression of primes results the double density of occupation of integer positions by multiples of the... 详细信息
来源: 维普期刊数据库 维普期刊数据库 博看期刊 评论
The Symmetric Series of Multiples of Primes
收藏 引用
Advances in Pure Mathematics 2022年 第3期12卷 160-177页
作者: Pal Doroszlai horacio keller Independent Researcher Kékkut Hungary
The union of the straight and over the point of reflection—reflected series of the arithmetic progression of primes results in the double density of occupation of integer positions. It is shown that the number of fre... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
The Primes and Their Subsets as Continuum like the Integers
收藏 引用
Advances in Pure Mathematics 2023年 第12期13卷 733-750页
作者: Pal Doroszlai horacio keller Independent Researcher Kékkut Hungary
The present paper gives the proof of the set of primes as a continuum. It starts with the density of the primes, and shortly recapitulates the prime-number-formula and the complete-prime-number-formula. Reflecting the... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
The Integral of the Inverse of the Primes
收藏 引用
Advances in Pure Mathematics 2023年 第5期13卷 250-266页
作者: Pal Doroszlai horacio keller Independent Researcher Kékkut Hungary
The present paper gives the proof of the set of primes as continuum and evaluates the analytical formula for the integral of the inverse of the primes over the distance. First it starts with the density of the primes,... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
The Infinite Polynomial Products of the Gamma and Zeta Functions
收藏 引用
Advances in Pure Mathematics 2022年 第6期12卷 451-464页
作者: Pál Doroszlai horacio keller Independent Researcher Kékkút Hungary
Starting with the binomial coefficient and using its infinite product representation, the infinite product representation of the gamma function and of the zeta function are composed of an exponential and of a trigonom... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Erratum to “The Symmetric Series of Multiples of Primes” [Advances in Pure Mathematics, 12 (2022) 160-177]
收藏 引用
Advances in Pure Mathematics 2022年 第12期12卷 742-743页
作者: Pal Doroszlai horacio keller Independent Researcher Kékkut Hungary
The original online version of this article (Doroszlai, P. and keller, H. (2022) The Symmetric Series of Multiples of Primes, Advances in Pure Mathematics, Vol. 12, 160-177. http://***/10.4236/apm.2022.123014) unfortu... 详细信息
来源: 维普期刊数据库 维普期刊数据库 博看期刊 评论
The Number of Primes
收藏 引用
Advances in Pure Mathematics 2022年 第2期12卷 81-95页
作者: Pál Doroszlai horacio keller Independent Researcher Kékkút Hungary
It is known that the prime-number-formula at any distance from the origin has a systematic error. It is shown that this error is proportional to the square of the number of primes present up to the square root of the ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
The Exponential Function as Split Infinite Product
收藏 引用
Advances in Pure Mathematics 2022年 第4期12卷 308-331页
作者: Pál Doroszlai horacio keller Independent Researcher Kékkut Hungary
It is shown that any polynomial written as an infinite product with all positive real roots may be split in two steps into the product of four infinite polynomials: two with all imaginary and two with all real roots. ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论