咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 理学
    • 3 篇 数学
  • 3 篇 工学
    • 3 篇 机械工程
    • 3 篇 控制科学与工程
    • 2 篇 信息与通信工程
    • 2 篇 计算机科学与技术...
    • 2 篇 软件工程
    • 2 篇 网络空间安全
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
    • 1 篇 航空宇航科学与技...
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 1 篇 deep learning
  • 1 篇 distributed syst...
  • 1 篇 artificial intel...
  • 1 篇 extended observe...
  • 1 篇 5g communication...
  • 1 篇 deep reinforceme...
  • 1 篇 network selectio...
  • 1 篇 spacecraft contr...
  • 1 篇 deep-q-network(d...
  • 1 篇 hetnet
  • 1 篇 federated learni...
  • 1 篇 federated averag...
  • 1 篇 attitude stabili...
  • 1 篇 machine learning...
  • 1 篇 discrete-time co...

机构

  • 1 篇 department of co...
  • 1 篇 department of co...
  • 1 篇 department of el...
  • 1 篇 department of co...

作者

  • 3 篇 alessandro giuse...
  • 3 篇 antonio pietrabi...
  • 2 篇 francesco delli ...
  • 1 篇 emanuele de sant...
  • 1 篇 michael capponi
  • 1 篇 sabato manfredi

语言

  • 3 篇 英文
检索条件"作者=antonio Pietrabissa"
3 条 记 录,以下是1-10 订阅
排序:
A Weighted Average Consensus Approach for Decentralized Federated Learning
收藏 引用
Machine Intelligence Research 2022年 第4期19卷 319-330页
作者: Alessandro Giuseppi Sabato Manfredi antonio pietrabissa Department of Computer Controland Management EngineeringUniversity of Rome La SapienzaRome 00185Italy Department of Electrical Engineering and Information Technology University of Naples Federico ⅡNaples 80125Italy
Federated learning(FedL)is a machine learning(ML)technique utilized to train deep neural networks(DeepNNs)in a distributed way without the need to share data among the federated training *** was proposed for edge comp... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Robust and fault-tolerant spacecraft attitude control based on an extended-observer design
收藏 引用
Control Theory and Technology 2022年 第3期20卷 323-337页
作者: Alessandro Giuseppi Francesco Delli Priscoli antonio pietrabissa Department of Computer Control and Management EngineeringLa SapienzaUniversity of RomeVia Ariosto 25Rome00185Italy
The aim of this work is to develop a robust control strategy able to drive the attitude of a spacecraft to a reference value,despite the presence of unknown but bounded uncertainties in the system parameters and exter... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Satellite Integration into 5G:Deep Reinforcement Learning for Network Selection
收藏 引用
Machine Intelligence Research 2022年 第2期19卷 127-137页
作者: Emanuele De Santis Alessandro Giuseppi antonio pietrabissa Michael Capponi Francesco Delli Priscoli Department of Computer Control and Management Engineering“Antonio Ruberti”University of Rome La SapienzaRome 00185Italy
This paper proposes a deep-Q-network(DQN) controller for network selection and adaptive resource allocation in heterogeneous networks, developed on the ground of a Markov decision process(MDP) model of the problem. Ne... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论