The diffusion and adsorption behaviors of benzene and propylene in zeolites MFI, MWW and BEA have been studied by molecular dynamics(MD) and grand canonical Monte Carlo(GCMC) simulations. The diffusion coefficient...
详细信息
The diffusion and adsorption behaviors of benzene and propylene in zeolites MFI, MWW and BEA have been studied by molecular dynamics(MD) and grand canonical Monte Carlo(GCMC) simulations. The diffusion coefficients of benzene and propylene in MFI, MWW and BEA zeolites were calculated by simulating the mean-square displacements(MSD) at 298 and 600 K. Benzene and propylene showed the different adsorption rules in the channels of the three zeolites. For propylene, the molecular loadings decreased in the order: BEA(linear channel)〉BEA (tortuous channel)〉MFI(linear channel)〉MWW(12-membered rings, 12MR channel)〉MFI(tortuous channel)〉MWW (10-membered rings, 10MR channel); for benzene, the molecular loadings decreased in the order: BEA(linear chan-nel)〉BEA(tortuous channel)〉MWW(12MR channel)〉MFI(linear channel)〉MFI(tortuous channel)〉MWW(10MR channel). Besides, the adsorption isotherms of benzene and propylene in the three zeolites at 298 and 443 K were simulated. The results show that the different factors influenced the molecular adsorption at various temperatures and pressures, leading to the different rules for the adsorption of benzene and propylene molecules in the zeolites. At a low pressure, the unfavorable energy would make the loadings of propylene lower than those of benzene. When pressure was higher than 0.25 kPa, the adsorption of benzene in MFI would nearly reach saturation.
This paper presents a flexible model and a robust algorithm for simulation of multi-stage multi-component separation processes in which multiple feeds, side streams, strippers and/or side heat exchangers are involved....
详细信息
This paper presents a flexible model and a robust algorithm for simulation of multi-stage multi-component separation processes in which multiple feeds, side streams, strippers and/or side heat exchangers are involved. The improved algorithm effectively accelerates the speed of convergence and offers better stability by introducing a damping factor for updating the stripping factor, and also reduces the requirement on the initial estimates by updating the Joacobian matrix directly with the stripping factor and enthalpy. On the other hand, an efficient algorithm was proposed to solve the approximate tri-diagonal matrix (containing the off-band elements) derived from the material balance equations (M equations) and phase equilibrium equations (E equations), the advantages and simplicity of the “insideout” technique of the Russell are retained. The present algorithm was demonstrated to be effective in simulating complex separation columns with typical case studies.
暂无评论