咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 1 篇 材料科学与工程(可...
    • 1 篇 控制科学与工程
    • 1 篇 化学工程与技术
  • 2 篇 理学
    • 1 篇 化学
    • 1 篇 系统科学

主题

  • 1 篇 alloys
  • 1 篇 prediction
  • 1 篇 symbolic
  • 1 篇 precise
  • 1 篇 cluster
  • 1 篇 transfer
  • 1 篇 atomic
  • 1 篇 simplicity
  • 1 篇 coni

机构

  • 2 篇 department of ma...
  • 1 篇 citrine informat...
  • 1 篇 computer science...
  • 1 篇 department of ma...
  • 1 篇 department of ph...
  • 1 篇 engineering labo...
  • 1 篇 skolkovo institu...
  • 1 篇 fritz haber inst...

作者

  • 3 篇 tim mueller
  • 2 篇 alberto hernande...
  • 1 篇 fenglin yuan
  • 1 篇 matthias rupp
  • 1 篇 sukriti manna
  • 1 篇 simon a.m.mason
  • 1 篇 yunzhe wang
  • 1 篇 conrad w.rosenbr...
  • 1 篇 alexander v.shap...
  • 1 篇 gábor csányi
  • 1 篇 sam norwood
  • 1 篇 gus l.w.hart
  • 1 篇 adarsh balasubra...
  • 1 篇 brayden bekker
  • 1 篇 shanping liu
  • 1 篇 peter lile
  • 1 篇 david w.wingate
  • 1 篇 chandramouli nys...

语言

  • 3 篇 英文
检索条件"作者=Tim Mueller"
3 条 记 录,以下是1-10 订阅
排序:
Accelerated prediction of atomically precise cluster structures using on-the-fly machine learning
收藏 引用
npj Computational Materials 2022年 第1期8卷 1644-1653页
作者: Yunzhe Wang Shanping Liu Peter Lile Sam Norwood Alberto Hernandez Sukriti Manna tim mueller Department of Materials Science and Engineering Johns Hopkins UniversityBaltimoreMD21218USA
The chemical and structural properties of atomically precise nanoclusters are of great interest in numerous applications,but predicting the stable structures of clusters can be computationally *** this work,we present... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Fast,accurate,and transferable many-body interatomic potentials by symbolic regression
收藏 引用
npj Computational Materials 2019年 第1期5卷 161-171页
作者: Alberto Hernandez Adarsh Balasubramanian Fenglin Yuan Simon A.M.Mason tim mueller Department of Materials Science and Engineering Johns Hopkins UniversityBaltimoreMDUSA
The length and time scales of atomistic simulations are limited by the computational cost of the methods used to predict material *** recent years there has been great progress in the use of machine-learning algorithm... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Machine-learned multi-system surrogate models for materials prediction
收藏 引用
npj Computational Materials 2019年 第1期5卷 702-707页
作者: Chandramouli Nyshadham Matthias Rupp Brayden Bekker Alexander V.Shapeev tim mueller Conrad W.Rosenbrock Gábor Csányi David W.Wingate Gus L.W.Hart Department of Physics and Astronomy Brigham Young UniversityProvoUT 84602USA Fritz Haber Institute of the Max Planck Society Faradayweg 4–614195 BerlinGermany Skolkovo Institute of Science and Technology Skolkovo Innovation CenterBuilding 3Moscow 143026Russia Department of Materials Science and Engineering Johns Hopkins UniversityBaltimoreMD 21218USA Engineering Laboratory University of CambridgeTrumpington StreetCambridge CB21PZUK Computer Science Department Brigham Young UniversityProvoUT 84602USA Citrine Informatics 702 Marshall StreetRedwood CityCA 94063USA
Surrogate machine-learning models are transforming computational materials science by predicting properties of materials with the accuracy of ab initio methods at a fraction of the computational *** demonstrate surrog... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论