咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程

主题

  • 1 篇 image
  • 1 篇 instrument
  • 1 篇 eliminate

机构

  • 1 篇 center for appli...
  • 1 篇 materials scienc...
  • 1 篇 defense technolo...
  • 1 篇 computational en...

作者

  • 1 篇 emily robertson
  • 1 篇 xiaoting zhong
  • 1 篇 keenan eves
  • 1 篇 t.yong-jin han
  • 1 篇 t.nathan mundhen...
  • 1 篇 brian gallagher

语言

  • 1 篇 英文
检索条件"作者=T.nathan Mundhenk"
1 条 记 录,以下是1-10 订阅
排序:
A study of real-world micrograph data quality and machine learning model robustness
收藏 引用
npj Computational Materials 2021年 第1期7卷 1463-1473页
作者: Xiaoting Zhong Brian Gallagher Keenan Eves Emily Robertson t.nathan mundhenk t.Yong-Jin Han Materials Science Division Lawrence Livermore National LaboratoryLivermoreCAUSA Center for Applied Scientific Computing Lawrence Livermore National LaboratoryLivermoreCAUSA Defense technologies Engineering Division Lawrence Livermore National LaboratoryLivermoreCAUSA Computational Engineering Division Lawrence Livermore National LaboratoryLivermoreCAUSA
Machine-learning(ML)techniques hold the potential of enabling efficient quantitative micrograph analysis,but the robustness of ML models with respect to real-world micrograph quality variations has not been carefully ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论