Fractures occur in nearly all rocks at the Earth’s surface and exert essential control on the mechanical strengths of rock masses and *** fractures strongly impact the stability of geological or man-made structures a...
详细信息
Fractures occur in nearly all rocks at the Earth’s surface and exert essential control on the mechanical strengths of rock masses and *** fractures strongly impact the stability of geological or man-made structures and flow of water and hydrocarbons,CO_(2) and storing *** this,the dependence of opening mode fracture spacing(s)on bed thickness(t)in sedimentary basins(reservoirs)is studied in this *** paper shows that the MichaeliseMenten equation can provide an algebraic expression for the nonlinear s-t *** two parameters have clear geological meanings:a is the maximum fracture spacing which can no longer increase with increasing t,and b is the characteristic bed thickness when s=*** tensile fracture strength(C)of the brittle beds during the formation of tensile fractures can be estimated from the two *** sandstones of 16 areas reported in the literature,C ranges from 2.7 MPa to 15.7 MPa with a mean value of 8 MPa,which lies reasonably within the range of tensile strengths determined *** field-based approach by means of MichaeliseMenten equation provides a new method for estimating the tensile fracture strength of rock layers under natural conditions.
Two vertical and orthogonal systematic joint sets are generally arrayed in a grid pattern on the bedding surface,which are the significant features of flat-lying sandstone *** extensive researches are reported on this...
详细信息
Two vertical and orthogonal systematic joint sets are generally arrayed in a grid pattern on the bedding surface,which are the significant features of flat-lying sandstone *** extensive researches are reported on this topic,many fundamental problems have still not been *** mutually perpendicular opening-mode fractures are an obvious manifestation of effective tensile stresses in two orthogonal directions in the horizontal bedding plane.A good understanding of these orthogonal joint systems is a key to structural analysis,landscape interpretation,and guidance of resolving a number of very practical problems in engineering,mining and hydrologic *** on an anatomic investigation on the orthogonal joints in the Potsdam sandstone of Cambrian age at Ausable Chasm(New York State,USA)and Beauharnois(Quebec,Canada),we proposed that the orthogonal joints may result from the auxetic effects of quartz-rich sandstone rather than local or regional rotation of the maximum tensile stress(σ_(3))direction by about 90°.The sandstone beds with negative Poisson's ratios are so fascinating that,when placed under vertical burial compression and layer-parallel extension in one direction(σ_(3)),it becomes stretched in the transverse direction(σ_(2)),producing two orthogonal sets of mutual abutting and intersecting joints(J1 and J2 normal toσ_(3) andσ_(2),respectively),and both are normal to the bedding *** set J1 is more closely-spaced than J2 by a factor of∼3.3,which is correlated with an average Poisson's ratio of−0.3 for the Potsdam sandstone at the time of joint formation.
Although the Indus-Tsangpo Suture(ITS) is the most spectacular thrust system of continent-continent collision in the world, fundamental questions about its strength evolution and deformation behavior transition remain...
详细信息
Although the Indus-Tsangpo Suture(ITS) is the most spectacular thrust system of continent-continent collision in the world, fundamental questions about its strength evolution and deformation behavior transition remain unanswered. Here we reported, for the first time, frictional melting-induced pseudotachylytes in the intensively deformed felsic rocks along the ITS zone in southern Tibet. This study reveals that pseudotachylytes induced profound weakness of the boundary fault between Indian and Asian plates. The intrinsically low strength of the foliated microlites crystallized from frictional melt or glass(i.e., pseudotachylyte) at seismogenic depths compared with the surrounding coarse-grained quartzofeldspathic rocks in the brittle and semi-brittle regime is sufficient to explain the localization of shear strain, the development of ductile shear zones embedded in strong wall rocks, and the transition from the strong to weak fault behaviors without invoking the presence of high fluid pressure or low friction coefficient metasomatic materials(e.g., smectite or lizardite) within the faults.
Geometrical analyses of 3930 potholes (3565 fluvial potholes, 237 marine potholes and 128 hillside potholes) from 33 localities in the world reveal a consistent, linear relationship: D Nh + M, where h and D are, r...
详细信息
Geometrical analyses of 3930 potholes (3565 fluvial potholes, 237 marine potholes and 128 hillside potholes) from 33 localities in the world reveal a consistent, linear relationship: D Nh + M, where h and D are, respectively, the depth and mean diameter of pothole, M is a critical size of the initial concavities (seminal potholes) that subsequently underwent growth, and N is the ratio of diameter expanding (wall erosion) speed to deepening (floor abrasion) speed. For the stream potholes, N is generally less than 1 with an average value of 0.67, M varies from 5.3 cm to 40.5 cm with an average of 20 cm, and N decreases gently with increasing M. However, the marine and hillside potholes are generally characterized by N 〉 1 and M 〈 10-14 cm, and a power-law relationship N 4.24M o.78 (coefficient of determination R2 0.75, M is in cm) exists. The results indicate that depth increases faster than diameter for stream potholes due to the larger size of grinding stones (〉5-10 cm), while depth increases slower than diameter for marine potholes and hillside potholes due to the smaller size of grinding stones (〈5-10 cm). The pothole h-D relationship is nearly independent of rock type. Knowledge of the pothole depth-diameter relationship is useful in a number of contexts, including simulation of hydraulic dynamics, theoretical considerations of erosion, comprehension of channel incision and development of canyons and gorges, and accurate estimation of excavation volume and mechanical strength ofpotholed bedrock in the design and stability analysis of hydraulic and environmental engineering projects (e.g. dam construction and river dredging).
The ratio of P- to S-wave velocities (Vp/Vs) is regarded as one of the most diagnostic properties of natural rocks. It has been used as a discriminant of composition for the continental crust and provides valuable c...
详细信息
The ratio of P- to S-wave velocities (Vp/Vs) is regarded as one of the most diagnostic properties of natural rocks. It has been used as a discriminant of composition for the continental crust and provides valuable constraints on its formation and evolution processes. Furthermore, the spatial and temporal changes in Vp/Vs before and after earthquakes are probably the most promising avenue to understanding the source mechanics and possibly predicting earthquakes. Here we calibrate the variations in Vp/Vs in dry, anisotropic crustal rocks and provide a set of basic information for the interpretation of future seismic data from the Wenchuan earthquake Fault zone Scientific Drilling (WFSD) project and other surveys. Vp/Vs is a constant (Ф0) for an isotropic rock. However, most of crustal rocks are anisotropic due to lattice-preferred orientations of anisotropic minerals (e.g., mica, amphibole, plagioclase and pyroxene) and cracks as well as thin compositional layering. The Vp/Vs ratio of an anisotropic rock measured along a selected pair of propagation-vibration directions is an apparent value (Фy) that is significantly different from the value for its isotropic counterpart (Ф0). The usefulness of apparent Vp/Vs ratios as a diagnostic of crustal composition depends largely on rock seismic anisotropy. A 5% of P- and S-wave velocity anisotropy is sufficient to make it impossible to determine the crustal composition using the conventional criteria (Vp/Vs≤1.756 for felsic rocks, 1.756〈Vp/Vs≤1.809 for intermediate rocks, 1.809〈Vp/Vs≤1.944 for mafic rocks, and Vp/V2〉1.944 fluidfilled porous/fractured or partially molten rocks) if the information about the wave propagation-polarization directions with respect to the tectonic framework is unknown. However, the variations in Vp/Vs measured from borehole seismic experiments can be readily interpreted according to the orientations of the ray path and the polarization of the shear waves with respect to the present-day principal stre
The generalized mixture rule(GMR) is used to provide a unified framework for describing Young’s(E),shear(G) and bulk(K) moduli, Lame parameter(l), and P- and S-wave velocities(Vpand Vs) as a function of porosity in v...
详细信息
The generalized mixture rule(GMR) is used to provide a unified framework for describing Young’s(E),shear(G) and bulk(K) moduli, Lame parameter(l), and P- and S-wave velocities(Vpand Vs) as a function of porosity in various isotropic materials such as metals, ceramics and rocks. The characteristic J values of the GMR for E, G, K and l of each material are systematically different and display consistent correlations with the Poisson’s ratio of the nonporous material(v0). For the materials dominated by corner-shaped pores, the fixed point at which the effective Poisson’s ratio(n) remains constant is at v0=0.2, and J(G) > J(E) > J(K) > J(l) and J(G) 0.2 and v0 J(Vp) and J(Vs) 0.2 and v0 0.2 and v0=0.2, respectively. For natural rocks containing thin-disk-shaped pores parallel to mineral cleavages, grain boundaries and foliation, however, the n fixed point decreases nonlinearly with decreasing pore aspect ratio(a: width/length). With increasing depth or pressure, cracks with smaller a values are progressively closed, making the n fixed point rise and finally reach to the point at v0=0.2.
Vertical orthogonal joints are a common feature in shallow crustal *** are several competing theories for their formation despite the *** examined the exceptional exposures of orthogonal joints in flat-lying Ordovicia...
详细信息
Vertical orthogonal joints are a common feature in shallow crustal *** are several competing theories for their formation despite the *** examined the exceptional exposures of orthogonal joints in flat-lying Ordovician limestone beds from the Havre-Saint-Pierre Region in Quebec,Canada(north shore of Saint-Lawrence River)to test conceptual models of joint formation in a natural *** the region,the spacing of cross-joints is consistently larger than the spacing of systematic joints by a factor of 1.5 *** joint-spacing-to-bed-thickness ratios(s/t)are much larger in these beds(s/t=4.3 for systematic joints,and 6.4 for cross-joints)than those in higher strained strata along the south shore of the Saint-Lawrence River(s/t=1),highlighting the effect of tectonic strain in decreasing fracture spacing and block *** high values of s/t indicate that cross-joint formation was unlikely caused by a switch from compression to tension once a critical s/t ratio for systematic joints was reached(as hypothesized in previous studies).We proposed a new model for the formation of orthogonal joint systems where the principal stress axes locally switch during the formation of systematic *** presence of ladder-shaped orthogonal joints suggests a state of effective stress withσ_(1)^(∗)≫0>σ_(2)^(∗)>σ_(3)^(∗)and whereσ_(2)^(∗)-σ_(3)^(∗)is within the range of fracture strength variability at the time of *** research provides a new mechanical model for the formation of orthogonal joint systems and cuboidal blocks.
Lame modulus (λ) and shear modulus (μ) are among the most important, intrinsic, elastic constants of rocks. Using 7. and μ could be much more advantageous than using P- and S-wave velocities (Vp and Vs). Here...
详细信息
Lame modulus (λ) and shear modulus (μ) are among the most important, intrinsic, elastic constants of rocks. Using 7. and μ could be much more advantageous than using P- and S-wave velocities (Vp and Vs). Here we quantified these equivalent isotropic elastic moduli for 115 representative rocks from the ultrahigh pressure (UHP) metamorphic terrane of the Dabie-Sulu orogenic belt (China) and their variations with pressure (P), temperature (T), density (p), Vp, Vs and mineralogical composition. Both moduli increase nonlinearly and linearly with increasing pressure at low (〈200-300 MPa) and high (〉200-300 MPa) pressures, respectively. In the regime of high pressures, 7. and IX decrease quasi-linearly with increasing temperature with temperature derivatives dλ/dT and dμ/dT generally in the range of -10×10-3 to -1×10-3 GPa/℃. Dehydration of water-bearing minerals such as serpentine in peridotites and chlorite in retrograde eciogites results in an abrupt drop in 7. while μ remains almost unchanged. In Z-p, μ-p and 7.-IX plots, the main categories of UHP rocks can be characterized. Serpentinization leads to significant decreases in μ and 7. as serpentine has extremely low values of Z, μ and p. Eclogites, common mafic rocks (mafic gneiss, metagabbro and amphibolite), and felsic rocks (orthogneiss and paragneiss) have high, moderate and low μ and λ values, respectively. For pyroxenes and olivines, λ increases but μ decreases with increasing Fe/Mg ratios. For plagioclase feldspars, both Z and μ exhibit a significant positive correlation with anorthite content. SiO2-rich felsic rocks and quartzites are deviated remarkably from the general trend lines of the acid-intermediate-mafic rocks in Vs-p, μ-p, λ-Vp,λ-Vs and μ-λ diagrams because quartz has extremely low λ (-8.1 GPa) and p (2.65 g/cm3) but moderate μ (44.4 GPa) values. Increasing the contents of garnet, rutile, ilmenite and magnetite results in a significant increase in the λ and μ values of the UHP metamorphic rocks. Howev
The 12 May 2008 Wenchuan earthquake (Ms=8.0) struck on the Longmen Shan foreland thrust zone. The event took place within the context of long-term uplift of the Longmen Shan range as a result of the extensive eastwa...
详细信息
The 12 May 2008 Wenchuan earthquake (Ms=8.0) struck on the Longmen Shan foreland thrust zone. The event took place within the context of long-term uplift of the Longmen Shan range as a result of the extensive eastward-extrusion of crustal materials from the Tibetan plateau against the rheologically strong crust of the Sichuan Basin. The Longmen Shan range is charac- terized by a Pre-Sinian crystalline complex constrained by the Maoxian-Wenchuan-Kangding ductile detach- ment at the western margin and the Yingxiu-Beichuan- Luding ductile thrust at the eastern margin. The Long- men Shan uplift was initiated by intracontinental sub- duction between the Songpan-Ganzi terrane and the Yangtze block during the Pre-Cenozoic. The uplift rate was increased considerably by the collision between the Indian and Eurasian plates since -50 Ma. The Wenchuan earthquake resulted in two major NE-strik- ing coseismic ruptures (i.e., the -275 km long Yingxiu- Beichuan-Qingchuan fault and the -100 km long Anx- ian-Guanxian fault). Field investigations combined with focal solutions and seismic reflection profiles suggest that the coseismic ruptures are steeply dipping close-to- pure reverse or right reverse oblique slip faults in the -15 km thick upper crust. These faults are unfavorably oriented for frictional slip in the horizontally compres- sional regime, so that they need a long recurrence interval to accumulate the tectonic stress and fluid pres- sure to critically high levels for the formation of strong earthquakes at a given locality. It is also found that all the large earthquakes (Ms〉7.0) occurred in the fault zones across which the horizontal movement velocities measured by the GPS are markedly low (〈3 mm/yr). The faults, which constitute the northeastern fronts of the enlarging Tibetan plateau against the strong Sichuan Basin, Ala Shan and Ordos blocks, are very destructive, although their average recurrence intervals are generally long.
暂无评论