咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 理学
    • 1 篇 系统科学
  • 1 篇 工学
    • 1 篇 控制科学与工程

主题

  • 1 篇 modulus
  • 1 篇 resilient
  • 1 篇 network
  • 1 篇 least
  • 1 篇 clay
  • 1 篇 masonry
  • 1 篇 vector
  • 1 篇 support
  • 1 篇 neural
  • 1 篇 square
  • 1 篇 concrete
  • 1 篇 recycled
  • 1 篇 artificial
  • 1 篇 aggregate
  • 1 篇 machine

机构

  • 1 篇 incheon disaster...
  • 1 篇 department of ci...
  • 1 篇 department of pu...

作者

  • 1 篇 sayed shwally
  • 1 篇 sherif m.el-bada...
  • 1 篇 jong wan hu
  • 1 篇 ali arisha
  • 1 篇 alaa r.gabr
  • 1 篇 mosbeh r.kaloop

语言

  • 1 篇 英文
检索条件"作者=Sayed SHWALLY"
1 条 记 录,以下是1-10 订阅
排序:
Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using soft computing techniques
收藏 引用
Frontiers of Structural and Civil Engineering 2019年 第6期13卷 1379-1392页
作者: Mosbeh R.KALOOP Alaa R.GABR Sherif M.EL-BADAWY Ali ARISHA sayed shwally Jong Wan HU Department of Civil and Environmental Engineering Incheon National UniversityIncheon 22012South Korea Incheon Disaster Prevention Research Center Incheon National UniversityIncheon 22012South Korea Department of Public Works and Civil Engineering Mansoura UniversityMansoura 35516Egypt
To date,very few researchers employed the Least Square Support Vector Machine(LSSVM)in predicting the resilient modulus(Mr)of Unbound Granular Materials(UGMs).This paper focused on the development of a LSSVM model to ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论