咨询与建议

限定检索结果

文献类型

  • 4 篇 期刊文献

馆藏范围

  • 4 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4 篇 理学
    • 4 篇 数学

主题

  • 1 篇 yang-baxter
  • 1 篇 17b37
  • 1 篇 bialgebras,
  • 1 篇 algebra poisson ...
  • 1 篇 witt
  • 1 篇 equation,
  • 1 篇 17b62
  • 1 篇 algebra
  • 1 篇 lie
  • 1 篇 17b66
  • 1 篇 of
  • 1 篇 type.
  • 1 篇 17b05
  • 1 篇 generalized
  • 1 篇 lie bialgebras
  • 1 篇 lie bialgebra
  • 1 篇 yang baxter equa...
  • 1 篇 yang-baxter equa...
  • 1 篇 hamiltonian lie ...
  • 1 篇 generalized vira...

机构

  • 2 篇 college of mathe...
  • 2 篇 department of ma...
  • 1 篇 college of mathe...
  • 1 篇 department of ma...
  • 1 篇 department of ma...
  • 1 篇 department of ma...
  • 1 篇 college of mathe...
  • 1 篇 department of ma...
  • 1 篇 department of ma...
  • 1 篇 department of ma...

作者

  • 1 篇 2 college of mat...
  • 1 篇 department of ma...
  • 1 篇 yue zhu wu
  • 1 篇 song guang'ai
  • 1 篇 department of ma...
  • 1 篇 yu cai su
  • 1 篇 3 department of ...
  • 1 篇 bin xin~(1+) gua...
  • 1 篇 guang ai song
  • 1 篇 su yucai

语言

  • 4 篇 英文
检索条件"作者=SONG Guang’ai & SU Yucai College of Mathematics and Information science, Shandong Institute of Business and technology, Yantai 264005, china"
4 条 记 录,以下是1-10 订阅
排序:
Lie bialgebras of generalized Witt type
收藏 引用
science china mathematics 2006年 第4期49卷 533-544页
作者: song guang’ai & su yucai college of mathematics and information science, shandong institute of business and technology, yantai 264005, china Department of mathematics, University of science and technology of china, Hefei 230026, china Department of mathematics, Shanghai Jiaotong University, Shanghai 200240, china college of mathematics and information science Shandong Institute of Business and Technology Yantai China Department of mathematics Shanghai Jiaotong University Shanghai China Department of mathematics University of Science and Technology of China Hefei China
In this paper, all Lie bialgebra structures on the Lie algebras of generalized Witt type are considered. It is proved that, for any Lie algebra W of generalized Witt type, all Lie bialgebras on W are the coboundary tr... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Hamiltonian type Lie bialgebras
收藏 引用
science china mathematics 2007年 第9期50卷 1267-1279页
作者: Bin XIN~(1+) guang-ai song~2 Yu-cai su~3 1 Department of mathematics,Shanghai Jiao Tong University,Shanghai 200240,china 2 college of mathematics and information science,shandong institute of business and technology,yantai 264005,china 3 Department of mathematics,University of science and technology of china,Hefei 230026,china Department of mathematics Shanghai Jiao Tong University Shanghai China college of mathematics and information science Shandong Institute of Business and Technology Yantai China Department of mathematics University of Science and Technology of China Hefei China
We first prove that,for any generalized Hamiltonian type Lie algebra H,the first co- homology group H^1(H,H(?)H) is *** then show that all Lie bialgebra structures on H are triangular.
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Dual Lie bialgebra structures of Poisson types
收藏 引用
science china mathematics 2015年 第6期58卷 1151-1162页
作者: song guang'ai su yucai college of mathematics and information science Shandong Institute of Business and Technology Department of mathematics Tongji University
Let A = F [x, y] be the polynomial algebra on two variables x, y over an algebraically closed field F of characteristic zero. Under the Poisson bracket, A is equipped with a natural Lie algebra structure. It is proven... 详细信息
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论
Lie Bialgebras of Generalized Virasoro-like Type
收藏 引用
Acta Mathematica Sinica,English Series 2006年 第6期22卷 1915-1922页
作者: Yue Zhu WU guang ai song Yu Cai su Department of mathematics Shanghai Jiao Tong University Shanghai 200240 P. R. China Department of mathematics Qufu Normal University Qufu 273165 P. R. China college of mathematics and information science Shandong Institute of Business and Technology Yantai 264005 P. R. China Department of mathematics University of Science and Technology of China Hefei 230026 P. R. China
In this paper, Lie bialgebra structures on generalized Virasoro-like algebras are studied. It is proved that all such Lie bialgebras are triangular coboundary.
来源: 维普期刊数据库 维普期刊数据库 同方期刊数据库 同方期刊数据库 评论