咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 控制科学与工程
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程
    • 1 篇 网络空间安全
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 1 篇 internet of thin...
  • 1 篇 deep learning
  • 1 篇 convolutional ne...
  • 1 篇 supervised learn...
  • 1 篇 intrusion detect...

机构

  • 1 篇 daai research gr...
  • 1 篇 department of el...
  • 1 篇 department of co...
  • 1 篇 department of co...
  • 1 篇 computer science...

作者

  • 1 篇 faisal saeed
  • 1 篇 sultan noman qas...
  • 1 篇 abdullah m.albar...
  • 1 篇 nasir sayed
  • 1 篇 muhammad shoaib
  • 1 篇 waqas ahmed

语言

  • 1 篇 英文
检索条件"作者=Nasir sayed"
1 条 记 录,以下是1-10 订阅
排序:
Augmenting IoT Intrusion Detection System Performance Using Deep Neural Network
收藏 引用
Computers, Materials & Continua 2023年 第1期74卷 1351-1374页
作者: nasir sayed Muhammad Shoaib Waqas Ahmed Sultan Noman Qasem Abdullah M.Albarrak Faisal Saeed Department of Computer Science Islamia College PeshawarPeshawar25120Pakistan Department of Computer Science CECOS University of IT and Emerging SciencesPeshawar25000Pakistan Department of Electrical Engineering HITEC University TaxilaTaxila47080Pakistan Computer Science Department College of Computer and Information SciencesImam Mohammad Ibn Saud Islamic University(IMSIU)Riyadh11432Saudi Arabia DAAI Research Group Department of Computing and Data ScienceSchool of Computing and Digital TechnologyBirmingham City UniversityBirminghamB47XGUK
Due to their low power consumption and limited computing power,Internet of Things(IoT)devices are difficult to ***,the rapid growth of IoT devices in homes increases the risk of *** detection systems(IDS)are commonly ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论