Platelet-rich plasma containing various growth factors can promote nerve regeneration. An inside-out vein graft can substitute nerve autograft to repair short nerve defects. It is hypothesized that an inside-out vein ...
详细信息
Platelet-rich plasma containing various growth factors can promote nerve regeneration. An inside-out vein graft can substitute nerve autograft to repair short nerve defects. It is hypothesized that an inside-out vein graft filled with platelet-rich plasma shows better effects in the repair of short sciatic nerve defects. In this study, an inside-out vein autograft filled with platelet-rich plasma was used to bridge a 10 mm-long sciatic nerve defect in rats. The sciatic nerve function of rats with an inside-out vein autograft filled with platelet-rich plasma was better improved than that of rats with a simple inside-out vein autograft. At 6 and 8 weeks, the sciatic nerve function of rats with an inside-out vein autograft filled with platelet-rich plasma was better than that of rats undergoing nerve autografting. Compared with the sciatic nerve repaired with a simple inside-out vein autograft, the number of myelinated axons was higher, axon diameter and myelin sheath were greater in the sciatic nerve repaired with an inside-out vein autograft filled with plateletrich plasma and they were similar to those in the sciatic nerve repaired with nerve autograft. These findings suggest that an inside-out vein graft filled with platelet-rich plasma can substitute nerve autograft to repair short sciatic nerve defects.
Herein,we report on surface plasmon(SP)-sensitive semitransparent inverted polymer photovoltaic(PV)devices that are based on multilayered material systems consisting of poly(3-hexylthiophene):fullerene-derivative bulk...
详细信息
Herein,we report on surface plasmon(SP)-sensitive semitransparent inverted polymer photovoltaic(PV)devices that are based on multilayered material systems consisting of poly(3-hexylthiophene):fullerene-derivative bulk-heterojunction PV layers and thin gold or silver *** demonstrate that these PV devices allow the simultaneous generation of both electrical power and SPs on their anodes for photoexcitation just above the optical absorption edge of the PV layers,resulting not only in attenuated total reflection,but also in attenuated photocurrent generation(APG)under the SP resonance(SPR)***,we also confirm that the biomolecular interaction of biotin–streptavidin on the PV devices can be precisely detected via apparent SPR angle shifts in the APG spectra,even without the need for complex attenuated total reflection *** highlight our view that APG measurements made using these PV devices show great potential for the development of future generations of compact and highly sensitive SPR-based optical sensors.
暂无评论