咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 理学
    • 1 篇 数学

主题

  • 1 篇 autoencoders
  • 1 篇 neural ode
  • 1 篇 reacting flows
  • 1 篇 chemical kinetic...
  • 1 篇 stiff system

机构

  • 1 篇 department of ae...
  • 1 篇 mechanical and a...
  • 1 篇 argonne leadersh...
  • 1 篇 ccrc king abdull...

作者

  • 1 篇 harshavardhana a...
  • 1 篇 mauro valorani
  • 1 篇 mohammad rafi ma...
  • 1 篇 hong g.im
  • 1 篇 shivam barwey
  • 1 篇 venkat raman
  • 1 篇 vijayamanikandan...
  • 1 篇 riccardo malpica...

语言

  • 1 篇 英文
检索条件"作者=Harshavardhana A.uranakara"
1 条 记 录,以下是1-10 订阅
排序:
A data-driven reduced-order model for stiff chemical kinetics using dynamics-informed training
收藏 引用
Energy and AI 2024年 第1期15卷 181-192页
作者: Vijayamanikandan Vijayarangan harshavardhana a.uranakara Shivam Barwey Riccardo Malpica Galassi Mohammad Rafi Malik Mauro Valorani Venkat Raman Hong G.Im CCRC King Abdullah University of Science and TechnologyThuwalSaudi Arabia Argonne Leadership Computing Facility Argonne National LaboratoryLemontIL 60439USA Mechanical and Aerospace Engineering Department Sapienza University of RomeVia Eudossiana18Rome 00184Italy Department of Aerospace Engineering University of MichiganAnn ArborMI 48109USA
A data-based reduced-order model(ROM)is developed to accelerate the time integration of stiff chemically reacting systems by effectively removing the stiffness arising from a wide spectrum of chemical time ***,the obj... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论