咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 理学
    • 1 篇 地质学

主题

  • 1 篇 pleistocene
  • 1 篇 paleo
  • 1 篇 xrf

机构

  • 1 篇 department of ea...
  • 1 篇 department of ge...
  • 1 篇 the stone age in...
  • 1 篇 department of ea...
  • 1 篇 geozentrum nordb...

作者

  • 1 篇 jackson k.njau
  • 1 篇 kathy schick
  • 1 篇 nicholas toth
  • 1 篇 lindsay j.mchenr...
  • 1 篇 gayantha r.l.kod...
  • 1 篇 ian g.stanistree...
  • 1 篇 harald stollhofe...

语言

  • 1 篇 英文
检索条件"作者=Harald Stollhofen"
1 条 记 录,以下是1-10 订阅
排序:
Wide & deep learning for predicting relative mineral compositions of sediment cores solely based on XRF scans, a case study from Pleistocene Paleolake Olduvai, Tanzania
Artificial Intelligence in Geosciences
收藏 引用
Artificial Intelligence in Geosciences 2024年 第1期5卷 244-256页
作者: Gayantha R.L.Kodikara Lindsay J.McHenry Ian G.Stanistreet harald stollhofen Jackson K.Njau Nicholas Toth Kathy Schick Department of Geosciences University of Wisconsin-Milwaukee3209 NMaryland AveMilwaukeeWI53211USA Department of Earth Ocean and Ecological SciencesUniversity of LiverpoolBrownlow StreetLiverpoolL693GPUK The Stone Age Institute BloomingtonIN47407-5097USA GeoZentrum Nordbayern Friedrich-Alexander-University(FAU)Erlangen-NümbergSchloβgarten 591054ErlangenGermany Department of Earth and Atmospheric Sciences Indiana University1001 East 10th StreetBloomingtonIN47405-1405USA
This study develops a method to use deep learning models to predict the mineral assemblages and their relative abundances in paleolake cores using high-resolution XRF core scan elemental data and X-ray diffraction(XRD... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论