Few-layer graphene (FLG) sheets with sizes exceeding several micrometers have been synthesized by exfoliation of expanded graphite in aqueous solution of ammonia under microwave irradiation, with an overall yield appr...
详细信息
Few-layer graphene (FLG) sheets with sizes exceeding several micrometers have been synthesized by exfoliation of expanded graphite in aqueous solution of ammonia under microwave irradiation, with an overall yield approaching 8 wt.%. Transmission electron microscopy (in bright-field and dark-field modes) together with electron diffraction patterns and atomic force microscopy confirmed that this graphene material consisted mostly of mono-, bi- or few-layer graphene (less than ten layers). The high degree of surface reduction was confirmed by X-ray photoelectron and infrared spectroscopies. In addition, the high stability of the FLG in the liquid medium facilitates the deposition of the graphene material onto several substrates via low-cost solution-phase processing techniques, opening the way to subsequent applications of the material.
Despite its appearance in physics around the 1850th, the second law of thermodynamics is still attracting more efforts to be clarified. More specifically, fifteen years later (1865) after its definition and introducti...
详细信息
Despite its appearance in physics around the 1850th, the second law of thermodynamics is still attracting more efforts to be clarified. More specifically, fifteen years later (1865) after its definition and introduction, entropy has been the subject of various interpretations. Hence, in physical sciences and notably in different education levels, its concept seems to be relatively tough to unambiguous decipher. In this work, we re-introduce the notion of entropy from classical, quantum and information theories viewpoints. The controversial over entropy and a measure of disorder misconception, stated by many scientists, is addressed as well to come up with less confusing physical interpretation of entropy. Hence, over time, an increase of entropy, a quantitative quantity, is most often associated to a rising of disorder, a non-quantitative quantity and no value-returning mathematical equation, rather than a continuously increasing of hidden data. In other words, linking disorder to hidden data is typically raising more confusion than clarification. Here, we shed more light on both concepts to find out an acceptable interpretation of entropy.
In this study, we thoroughly examined the impact of heat treatments and hole count (p) on the properties of LnSrBaCu3O6+z (Ln = Eu, Sm, Nd) compounds. We focused on preparation, X-ray diffraction with Rietveld refinem...
详细信息
In this study, we thoroughly examined the impact of heat treatments and hole count (p) on the properties of LnSrBaCu3O6+z (Ln = Eu, Sm, Nd) compounds. We focused on preparation, X-ray diffraction with Rietveld refinement, AC susceptibility, DC resistivity measurements, and heat treatment effects. Two heat treatment types were applied: oxygen annealing [O] and argon annealing followed by oxygen annealing [AO]. As the rare earth Ln’s ionic radius increased, certain parameters notably changed. Specifically, c parameter, surface area S, and volume V increased, while critical temperature Tc and holes (p) in the CuO2 plane decreased. The evolution of these parameters with rare earth Ln’s ionic radius in [AO] heat treatment is linear. Regardless of the treatment, the structure is orthorhombic for Ln = Eu, tetragonal for Ln = Nd, orthorhombic for Ln = Sm [AO], and pseudo-tetragonal for Sm [O]. The highest critical temperature is reached with Ln = Eu (Tc [AO] = 87.1 K). Notably, for each sample, Tc [AO] surpasses Tc [O]. Observed data stems from factors including rare earth ionic size, improved cationic and oxygen chain order, holes count p in Cu(2)O2 planes, and in-phase purity of [AO] samples. Our research strives to clearly demonstrate that the density of holes (p) within the copper plane stands as a determinant impacting the structural, electrical, and superconducting properties of these samples. Meanwhile, the other aforementioned parameters contribute to shaping this density (p).
暂无评论