We integrated Enviro-HIRLAM(Environment-High Resolution Limited Area Model)meteorological output into FLEXPART(FLEXible PARTicle dispersion model).A FLEXPART simulation requires meteorological input from a numerical w...
详细信息
We integrated Enviro-HIRLAM(Environment-High Resolution Limited Area Model)meteorological output into FLEXPART(FLEXible PARTicle dispersion model).A FLEXPART simulation requires meteorological input from a numerical weather prediction(NWP)*** publicly available version of FLEXPART can utilize either ECMWF(European Centre for Medium-range Weather Forecasts)Integrated Forecast System(IFS)forecast or reanalysis NWP data,or NCEP(*** Center for Environmental Prediction)Global Forecast System(GFS)forecast or reanalysis NWP *** primary benefits of using Enviro-HIRLAM are that it runs at a higher resolution and accounts for aerosol effects in meteorological *** compared backward trajectories gener-ated with FLEXPART using Enviro-HIRLAM(both with and without aerosol effects)to trajectories generated using NCEP GFS and ECMWF IFS meteorological inputs,for a case study of a heavy haze event which occurred in Beijing,China in November *** found that results from FLEXPART were considerably different when using different meteorological *** aerosol effects were included in the NWP,there was a small but noticeable differ-ence in calculated ***,when looking at potential emission sensitivity instead of simply expressing trajectories as lines,additional information,which may have been missed when looking only at trajectories as lines,can be inferred.
In this work, it shows that nuclear reactions in lightning channel, which are produced by the deuterium-deuterium (D-D) and deuterium-tritium (D-T) nuclear reactions, represent a plausible mechanism for gamma-ray burs...
详细信息
In this work, it shows that nuclear reactions in lightning channel, which are produced by the deuterium-deuterium (D-D) and deuterium-tritium (D-T) nuclear reactions, represent a plausible mechanism for gamma-ray bursts observed at ground. Gamma-ray emissions from lightning can be explained by neutron inelastic scattering in the air. Neutrons (produced in lightning channel) will delay a definitive time (~33 ms) to cover the atmosphere before hitting a molecule and producing gamma rays, which is somewhat longer than the gamma-ray time delay (~20 ms) observed at ground.
暂无评论