咨询与建议

限定检索结果

文献类型

  • 4 篇 期刊文献

馆藏范围

  • 4 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 3 篇 计算机科学与技术...
    • 2 篇 软件工程
    • 1 篇 控制科学与工程
  • 1 篇 理学
    • 1 篇 数学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 2 篇 fields
  • 1 篇 computer
  • 1 篇 utilize
  • 1 篇 typically
  • 1 篇 thermal
  • 1 篇 element
  • 1 篇 neural
  • 1 篇 dimensional
  • 1 篇 transformation
  • 1 篇 dynamics
  • 1 篇 aimd

机构

  • 2 篇 john a.paulson s...
  • 1 篇 interdisciplinar...
  • 1 篇 department of me...
  • 1 篇 bosch research c...
  • 1 篇 harvard school o...
  • 1 篇 john a.paulson s...
  • 1 篇 corporate sector...
  • 1 篇 center for compu...
  • 1 篇 northwestern uni...
  • 1 篇 robert bosch res...
  • 1 篇 department of ph...
  • 1 篇 department of ph...
  • 1 篇 robert bosch llc...
  • 1 篇 robert bosch llc...

作者

  • 4 篇 jonathan vanderm...
  • 4 篇 boris kozinsky
  • 3 篇 yu xie
  • 2 篇 lixin sun
  • 1 篇 steven b.torrisi
  • 1 篇 nakib h.protik
  • 1 篇 jonathan p.mailo...
  • 1 篇 simon batzner
  • 1 篇 alexie m.kolpak
  • 1 篇 chris wolverton
  • 1 篇 senja ramakers
  • 1 篇 andrea cepellott...
  • 1 篇 mordechai kornbl...
  • 1 篇 cheol woo park
  • 1 篇 anders johansson

语言

  • 4 篇 英文
检索条件"作者=Boris Kozinsky"
4 条 记 录,以下是1-10 订阅
排序:
Bayesian force fields from active learning for simulation of inter-dimensional transformation of stanene
收藏 引用
npj Computational Materials 2021年 第1期7卷 361-370页
作者: Yu Xie Jonathan Vandermause Lixin Sun Andrea Cepellotti boris kozinsky John A.Paulson School of Engineering and Applied Sciences Harvard UniversityCambridgeMAUSA Robert Bosch LLC Research and Technology CenterCambridgeMAUSA
We present a way to dramatically accelerate Gaussian process models for interatomic force fields based on many-body kernels by mapping both forces and uncertainties onto functions of low-dimensional *** allows for aut... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Uncertainty-aware molecular dynamics from Bayesian active learning for phase transformations and thermal transport in SiC
收藏 引用
npj Computational Materials 2023年 第1期9卷 2000-2007页
作者: Yu Xie Jonathan Vandermause Senja Ramakers Nakib H.Protik Anders Johansson boris kozinsky John A.Paulson School of Engineering and Applied Sciences Harvard UniversityCambridgeMAUSA Department of Physics Harvard UniversityCambridgeMAUSA Corporate Sector Research and Advance Engineering Robert Bosch GmbHRenningenUSA Interdisciplinary Centre for Advanced Materials Simulation Ruhr-Universität BochumBochumGermany Robert Bosch LLC Research and Technology CenterWatertownMAUSA
Machine learning interatomic force fields are promising for combining high computational efficiency and accuracy in modeling quantum interactions and simulating atomistic *** learning methods have been recently develo... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture
收藏 引用
npj Computational Materials 2021年 第1期7卷 650-658页
作者: Cheol Woo Park Mordechai Kornbluth Jonathan Vandermause Chris Wolverton boris kozinsky Jonathan P.Mailoa Robert Bosch Research and Technology Center CambridgeMA 02139USA Northwestern University EvanstonIL 60208USA Harvard School of Engineering and Applied Sciences CambridgeMA 02138USA
Recently,machine learning(ML)has been used to address the computational cost that has been limiting ab initio molecular dynamics(AIMD).Here,we present GNNFF,a graph neural network framework to directly predict atomic ... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论
On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events
收藏 引用
npj Computational Materials 2020年 第1期6卷 1502-1512页
作者: Jonathan Vandermause Steven B.Torrisi Simon Batzner Yu Xie Lixin Sun Alexie M.Kolpak boris kozinsky Department of Physics Harvard UniversityCambridgeMA 02138USA John A.Paulson School of Engineering and Applied Sciences Harvard UniversityCambridgeMA 02138USA Center for Computational Engineering Massachusetts Institute of TechnologyCambridgeMA 02139USA Department of Mechanical Engineering Massachusetts Institute of TechnologyCambridgeMA 02139USA Bosch Research CambridgeMA 02139USA
Machine learned force fields typically require manual construction of training sets consisting of thousands of first principles calculations,which can result in low training efficiency and unpredictable errors when ap... 详细信息
来源: 维普期刊数据库 维普期刊数据库 评论