Background: African animal trypanosomiasis (AAT) is caused mainly by Trypanosoma congolense, T. vivax, and T. brucei brucei and is the major constraint for livestock productivity in Sub-Saharan African countries. Info...
详细信息
Background: African animal trypanosomiasis (AAT) is caused mainly by Trypanosoma congolense, T. vivax, and T. brucei brucei and is the major constraint for livestock productivity in Sub-Saharan African countries. Information about animal trypanosomiasis status in Ivory Coast is missing, especially regarding molecular epidemiology. Therefore, this study intended to apply molecular tools to identify and characterize trypanosomes in Ivory Coast for sustainable control. Methods: 363 cattle blood samples were collected from Ferkessedougou Region in northern Ivory Coast in 2012. Buffy coat technique (BCT) and species-specific PCR assays were used to detect trypanosome species. Results: Out of 363 cattle examined with BCT, 33 were found positive with all trypanosomes species accounting for an average of 9.09% prevalence whereas polymerase chain reaction (PCR) using species-specific primers showed that 81 out of 363 cattle were infected with trypanosomes with an overall prevalence of 22.31%. Trypanosoma congolense savanah type, T. Vivax and T. brucei sl. accounted for 28.39%, 49.38% and 23.45% of the infection rate respectively. No infection with T. congo forest?type was detected. T. vivax infection was the most prevalence in the area investigated compared to the two other trypanosome species. Mixed infections with different trypanosomes species were detected accounting for 7.32% of prevalence. Regarding sexrelated prevalence, male cattles were slightly more infected than female but the difference was not significant. Conclusion: Our results showed that there was a high prevalence of AAT in livestock in Ferkessedougou Area. There is therefore a need to strengthen control policies and institute measures that help prevent the spread of the parasites for sustainable control of animal trypanosome in this area.
Human African trypanosomiasis (HAT), or sleeping sickness, caused by Trypanosoma brucei gambiense, is associated with diverse clinical outcomes. Host’s genetic factors involved in immunity are potential factors that ...
详细信息
Human African trypanosomiasis (HAT), or sleeping sickness, caused by Trypanosoma brucei gambiense, is associated with diverse clinical outcomes. Host’s genetic factors involved in immunity are potential factors that can regulate infection. Genetic polymorphisms within HLA-G could influence the level of HLA-G expression and therefore play a critical role in infection outcomes. The goal of our study was to investigate the association of 14 bp Indel HLA-G polymorphism with the susceptibility/resistance to HAT. DNA samples were collected from 119 cases, 221 controls and 43 seropositive individuals living in Ivorian HAT foci. The 14 bp Indel polymorphism was determined by PCR. Homozygous individuals for 14 bp insertion had a lower risk of progressing to active HAT (p = 0.012, OR = 0.27, 95% CI: 0.09 - 0.8). Moreover, the frequency of 14 bp insertion homozygous genotype was higher in the seropositive group (11%) than in the HAT cases group (3%) (p = 0.043, OR = 0.27, 95% CI: 0.07 - 0.99), which suggested a protective effect of 14 bp insertion homozygous genotype. Genetic polymorphisms in HLA-G may be associated with a variable risk to develop HAT. The 14 bp insertion appears to favour the occurrence of long-lasting T. b. gambiense latent infections.
暂无评论