We present an input/output block (lOB) array used in the radiation-hardened SRAM-based field- programmable gate array (FPGA) VS1000, which is designed and fabricated with a 0.5 μm partially depleted silicon-on-in...
详细信息
We present an input/output block (lOB) array used in the radiation-hardened SRAM-based field- programmable gate array (FPGA) VS1000, which is designed and fabricated with a 0.5 μm partially depleted silicon-on-insulator (SOI) logic process at the CETC 58th Institute. Corresponding with the characteristics of the FPGA, each IOB includes a local routing pool and two IO cells composed of a signal path circuit, configurable input/output buffers and an ESD protection network. A boundary-scan path circuit can be used between the pro- grammable buffers and the input/output circuit or as a transparent circuit when the IOB is applied in different modes. Programmable IO buffers can be used at TTL/CMOS standard levels. The local routing pool enhances the flexibility and routability of the connection between the IOB array and the core logic. Radiation-hardened designs, including A-type and H-type body-tied transistors and special D-type registers, improve the anti-radiation performance. The ESD protection network, which provides a high-impulse discharge path on a pad, prevents the breakdown of the core logic caused by the immense current. These design strategies facilitate the design of FPGAs with different ca- pacities or architectures to form a series of FPGAs. The functionality and performance of the IOB array is proved after a functional test. The radiation test indicates that the proposed VS 1000 chip with an IOB array has a total dose tolerance of 100 krad(Si), a dose survivability rate of 1.5 × 10^11 rad(Si)/s, and a neutron fluence immunity of 1×10^14 n/cm2.
An experiment for m p(14C},14C*→10Be+α)p inelastic excitation and decay was performed in inverse kinematics at a beam energy of 25.3 MeV/u. A series of 14C excited states, including a new one at 18.3(1) MeV, w...
详细信息
An experiment for m p(14C},14C*→10Be+α)p inelastic excitation and decay was performed in inverse kinematics at a beam energy of 25.3 MeV/u. A series of 14C excited states, including a new one at 18.3(1) MeV, were observed which decay to various states of the final nucleus of 10Be. A specially designed telescope system, installed around zero degrees, played an essential role in detecting the resonant states near the α-separation threshold. A state at 14.1(1) MeV is clearly identified, being consistent with the predicted band-head of the molecular rotational band characterized by the π-bond linear chain configuration. Further clarification of the properties of this exotic state is suggested by using appropriate reaction tools.
暂无评论