Robust Student’s t-based Rauch-Tung-Striebel Smoother for Non-stationary Heavy-tailed Measurement Noises
作者单位:College of Intelligent Systems Science and EngineeringHarbin Engineering University
会议名称:《第40届中国控制会议》
会议日期:2021年
学科分类:12[管理学] 083002[工学-环境工程] 1204[管理学-公共管理] 120402[管理学-社会医学与卫生事业管理(可授管理学、医学学位)] 0830[工学-环境科学与工程(可授工学、理学、农学学位)] 08[工学] 0837[工学-安全科学与工程]
关 键 词:State estimation Rauch-Tung-Striebel smoother non-stationary heavy-tailed measurement noises variational Bayesian Student’s t-distribution
摘 要:To address the fixed-interval smoothing problem for a linear state-space model with non-stationary heavy-tailed measurement noises,a robust Student’s t-based Rauch-Tung-Striebel smoother is proposed in this *** measurement noise is modelled as a non-stationary Student’s t-distribution,which is written as a Gaussian hierarchical form by introducing Gaussian and Gamma random *** time-varying state trajectory,Student’s t-distribution parameters and auxiliary random variables are jointly estimated by using the variational Bayesian *** study shows that the proposed smoother outperforms the existing up-to-date smoothers in the face of non-stationary heavy-tailed measurement noises.