咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Simultaneous classification an... 收藏
Simultaneous classification and feature selection via LOG SV...

Simultaneous classification and feature selection via LOG SVM and Elastic LOG SVM

作     者:Jian-wei Liu Shuang-Cheng Li Li-peng Cui Xiong-lin Luo 

作者单位:Department of Automation China University of Petroleum Beijing Beijing Aerospace PetroChemical Technology And Equipment Engineering Company Limited 

会议名称:《第36届中国控制会议》

会议届次:36

主办单位:Dalian University of Technology;Systems Engineering Society of China (SESC);Technical Committee on Control Theory (TCCT), Chinese Association of Automation (CAA)

会议日期:2017年

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported by the National Natural Science Foundation of China under Grant No.21006127 

关 键 词:Classification Sparse Feature selection Non-convex LOG penalty LOG SVM Elastic LOG SVM 

摘      要:In data mining and machine learning,classifying the class labels and selecting features simultaneously are *** study proposes two new sparse support vector machines(SVMs),namely,LOG SVM and Elastic LOG *** LOG SVM uses the LOG penalty,and the Elastic LOG SVM combines the non-convex LOG penalty and the L norm *** LOG SVM and Elastic LOG SVM can achieve classification and feature selection *** quadratic approximation is used to solve both *** are also conducted to show that the proposed SVMs perform well in the aspects of classification and feature selection.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分