咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Region-based Multi-focus Image... 收藏
Region-based Multi-focus Image Fusion Using the Local Spatia...

Region-based Multi-focus Image Fusion Using the Local Spatial Frequency

作     者:Qingping Li Junping Du Fuzhao Song Chao Wang Honggang Liu Cheng Lu 

作者单位:Beijing Key Lab of Intelligent Telecommunication Software and Multimedia School of Computer Science Beijing University of Posts and Telecommunications 

会议名称:《第25届中国控制与决策会议》

主办单位:IEEE;NE Univ;IEEE Ind Elect Chapter;IEEE Harbin Sect Control Syst Soc Chapter;Guizhou Univ;IEEE Control Syst Soc;Syst Engn Soc China;Chinese Assoc Artificial Intelligence;Chinese Assoc Automat;Tech Comm Control Theory;Chinese Assoc Aeronaut;Automat Control Soc;Chinese Assoc Syst Simulat;Simulat Methods & Modeling Soc;Intelligent Control & Management Soc

会议日期:2013年

学科分类:08[工学] 080203[工学-机械设计及理论] 0802[工学-机械工程] 0811[工学-控制科学与工程] 

基  金:partially supported by National Basic Research Program of China (973 Program) 2012CB821200 (2012CB821206) National Natural Science Foundation of China (No.91024001, No.61070142) Beijing Natural Science Foundation (No.4111002) 

关 键 词:Multi-focus Image Fusion Local Spatial Frequency Image Segmentation 

摘      要:In image fusion domain, generic pixel-based image fusion methods are sensitive to imperfections of source images, and it therefore has much influence on the quality of the fusion results. Focusing on this problem, a region-based multi-focus image fusion scheme is proposed based on the local spatial frequency (LSF) in this paper. Firstly, calculate LSF for each pixel of source images, and a segmentation of the average image is introduced to segment the source images. From the segmented image, a shared region representation is obtained to label the source images. The identification of important features in shared region representation, region spatial frequency (RSF), is used to guide the fusion process. The experimental results show that the proposed scheme works well in multi-focus image fusion, and it outperforms comparison methods in terms of visual and objective evaluations.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分