咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Face Recognition Based on Maxi... 收藏
Face Recognition Based on Maximum Sparse Coefficients of Obj...

Face Recognition Based on Maximum Sparse Coefficients of Object Region

作     者:Zineng Xu Hongjun Li Xiangyu Jin Ching Y.Suen 

作者单位:School of Electronic Information Engineering Nantong University Centre for Pattern Recognition and Machine IntelligenceConcordia University 

会议名称:《2015年中国智能自动化学术会议》

会议日期:2015年

学科分类:08[工学] 080203[工学-机械设计及理论] 0802[工学-机械工程] 

基  金:supported by the National Natural Science Foundation of China(NO.61171077) University Science Research Project of Jiangsu Province(NO.12KJB510025) Nantong University Undergraduate Training Program for Innovation(NO.2013067) the Natural Sciences and Engineering Research Council of Canada 

关 键 词:Face recognition Maximum sparse coefficient Occlusion 

摘      要:Face recognition is an active topic in recognition systems, while face occlusion is one of the most challenging problems for recognition. Recently, robust sparse coding achieved the state-of-the-art performance, especially when dealing with occluded images. However, robust sparse coding is known that only guarantees the coefficient is global sparse when solving sparse coefficients. In this paper,we enable the elements in the object region to approximate global maximum by fitting the distribution of elements in the object region with successful *** efficacy of the proposed approach is verified on publicly available ***, our method can achieve much better performance when the training samples are limited.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分