Application of RBF Neural Network in the Model-free Adaptive Control
会议名称:《2011 Chinese Control and Decision Conference(CCDC)》
会议日期:2011年
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0802[工学-机械工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 080201[工学-机械制造及其自动化]
基 金:supported by the University Innovation Team in the Educational Department of Liaoning Province, China (2007T103,2009T062, LT2010058) the Liaoning Provincial Natural Science Foundation of China (20102127)
关 键 词:RBF neural network non-parametric model adaptive control pseudo-partial derivative
摘 要:To solve the impact of the unmodelled dynamics of the model process,model-free adaptive control based on RBF neural network is *** this algorithm nonlinear system is linearized by linearization of tight *** the system parameters are identified by the RBF neural network *** parameters are used to directly recursively compute model-free adaptive control *** controller is designed only by using I/O data of the controlled system,and no structural information or external testing signals are *** result shows that the proposed algorithm is an effective strategy with excellent tracking ability and strong robustness.