咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A New CMAC Neural Network Mode... 收藏
A New CMAC Neural Network Model with Adaptive Quantization I...

A New CMAC Neural Network Model with Adaptive Quantization Input Layer

作     者:GAO Xiaozhi WANG Changhong X.M.Gao Seppo J.Ovaska 

作者单位:Department of Control EngineeringP.O.Box 329Harbin Institute of Technology 

会议名称:《1996 3rd International Conference on Signal Processing(ICSP’96)》

会议日期:1996年

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

关 键 词:Neural networks Adaptive systems Quantization Signal processing algorithms Function approximation Control engineering Laboratories Algorithm design and analysis Arithmetic Robots 

摘      要:正In this paper,we first discuss the structure, principle and learning algorithm of CMAC neural network model.A new adaptive quantization method based on competitive learning is then proposed to quantimize the inputs of CMAC according to the degree of variations of the approximated *** analysis and simulation results show that with the input layer using this algorithm CMAC can approximate more accurately and efficiently than the original model using equal-size quantization method.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分