基于异构图神经网络的电商商品会话推荐系统的设计与实现
作者单位:北京邮电大学
学位级别:硕士
导师姓名:陈晋鹏
授予年度:2022年
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081203[工学-计算机应用技术] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:基于会话的推荐系统 异构图神经网络 注意力机制 电子商务
摘 要:在大数据时代,海量的数据信息给用户造成了严重的“信息超载问题,推荐系统是克服这个问题的主要方法之一。在电商领域,推荐系统通过挖掘用户与商品的历史交互行为捕捉用户兴趣偏好,为用户推荐其感兴趣的商品,并给电商平台创造更大的利润和价值。相对于传统的推荐方法只关注用户的长期静态偏好,基于会话的推荐方法将用户行为记录分解成粒度更小的会话,能够考虑用户行为的事务结构,并及时捕捉用户兴趣偏好的转变,从而为用户展示更加可靠的商品推荐结果。但是,以往基于会话的推荐方法的研究往往只关注会话数据集中商品间的顺序关系和转换关系,忽略了其它重要信息。因此本文提出了基于异构图神经网络的会话推荐算法,该算法将会话数据集构建成包含用户、商品、会话三种类型节点的异构图,使用异构图神经网络捕捉节点间复杂的依赖关系,并结合注意力机制强调当前会话的主要目的。为验证模型的性能,本文在两个开源的数据集上与目前比较流行的推荐方法进行比较。同时,本文设计并实现了一款前后端分离的电商商品推荐系统。与传统推荐系统不同的是,本系统以会话作为基本数据单元,并将基于异构图神经网络的会话推荐算法应用于该系统的推荐引擎,为用户提供基于当前会话的推荐服务。本系统的前端是基于Android技术开发的移动应用,后端采用Flask框架搭建Web服务,完成了用户管理、商品管理、会话管理、商品推荐以及可视化分析功能模块的开发。